12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effects of Radon and UV Exposure on Skin Cancer Mortality in Switzerland

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Skin cancer incidence in Switzerland is among the highest in the world. In addition to exposure to ultraviolet (UV) radiation, radon alpha particles attached to aerosols can adhere to the skin and potentially cause carcinogenic effects.

          Objectives:

          We investigated the effects of radon and UV exposure on skin cancer mortality.

          Methods:

          Cox proportional hazard regression was used to study the association between exposures and skin cancer mortality in adults from the Swiss National Cohort. Modeled radon exposure and erythemal-weighted UV dose were assigned to addresses at baseline. Effect estimates were adjusted for sex, civil status, mother tongue, education, job position, neighborhood socioeconomic position, and UV exposure from outdoor occupation.

          Results:

          The study included 5.2 million adults (mean age 48 y) and 2,989 skin cancer deaths, with 1,900 indicating malignant melanoma (MM) as the primary cause of death. Adjusted hazard ratios (HR) for MM at age 60 were 1.16 (95% CI: 1.04, 1.29) per 100 Bq / m 3 radon and 1.11 (1.01, 1.23) per W / m 2 in UV dose. Radon effects decreased with age. Risk of MM death associated with residential UV exposure was higher for individuals engaged in outdoor work with UV exposure (HR 1.94 [1.17, 3.23]), though not statistically significantly different compared to not working outdoors (HR 1.09 [0.99, 1.21], p = 0.09 ).

          Conclusions:

          There is considerable variation in radon and UV exposure across Switzerland. Our study suggests both are relevant risk factors for skin cancer mortality. A better understanding of the role of the UV radiation and radon exposure is of high public health relevance. https://doi.org/10.1289/EHP825

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          A Swiss neighbourhood index of socioeconomic position: development and association with mortality.

          Area-based measures of socioeconomic position (SEP) suitable for epidemiological research are lacking in Switzerland. The authors developed the Swiss neighbourhood index of SEP (Swiss-SEP). Neighbourhoods of 50 households with overlapping boundaries were defined using Census 2000 and road network data. Median rent per square metre, proportion households headed by a person with primary education or less, proportion headed by a person in manual or unskilled occupation and the mean number of persons per room were analysed in principle component analysis. The authors compared the index with independent income data and examined associations with mortality from 2001 to 2008. 1.27 million overlapping neighbourhoods were defined. Education, occupation and housing variables had loadings of 0.578, 0.570 and 0.362, respectively, and median rent had a loading of -0.459. Mean yearly equivalised income of households increased from SFr42 000 to SFr72 000 between deciles of neighbourhoods with lowest and highest SEP. Comparing deciles of neighbourhoods with lowest to highest SEP, the age- and sex-adjusted HR was 1.38 (95% CI 1.36 to 1.41) for all-cause mortality, 1.83 (95% CI 1.71 to 1.95) for lung cancer, 1.48 (95% CI 1.44 to 1.51) for cardiovascular diseases, 2.42 (95% CI 1.94 to 3.01) for traffic accidents, 0.93 (95% CI 0.85 to 1.02) for breast cancer and 0.86 (95% CI 0.78 to 0.95) for suicide. Developed using a novel approach to define neighbourhoods, the Swiss-SEP index was strongly associated with household income and some causes of death. It will be useful for clinical- and population-based studies, where individual-level socioeconomic data are often missing, and to investigate the effects on health of the socioeconomic characteristics of a place.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cohort Profile: the Swiss National Cohort--a longitudinal study of 6.8 million people.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A combined analysis of North American case-control studies of residential radon and lung cancer.

              Cohort studies have consistently shown underground miners exposed to high levels of radon to be at excess risk of lung cancer, and extrapolations based on those results indicate that residential radon may be responsible for nearly 10-15% of all lung cancer deaths per year in the United States. However, case-control studies of residential radon and lung cancer have provided ambiguous evidence of radon lung cancer risks. Regardless, alpha-particle emissions from the short-lived radioactive radon decay products can damage cellular DNA. The possibility that a demonstrated lung carcinogen may be present in large numbers of homes raises a serious public health concern. Thus, a systematic analysis of pooled data from all North American residential radon studies was undertaken to provide a more direct characterization of the public health risk posed by prolonged radon exposure. To evaluate the risk associated with prolonged residential radon exposure, a combined analysis of the primary data from seven large scale case-control studies of residential radon and lung cancer risk was conducted. The combined data set included a total of 4081 cases and 5281 controls, representing the largest aggregation of data on residential radon and lung cancer conducted to date. Residential radon concentrations were determined primarily by a-track detectors placed in the living areas of homes of the study subjects in order to obtain an integrated 1-yr average radon concentration in indoor air. Conditional likelihood regression was used to estimate the excess risk of lung cancer due to residential radon exposure, with adjustment for attained age, sex, study, smoking factors, residential mobility, and completeness of radon measurements. Although the main analyses were based on the combined data set as a whole, we also considered subsets of the data considered to have more accurate radon dosimetry. This included a subset of the data involving 3662 cases and 4966 controls with a-track radon measurements within the exposure time window (ETW) 5-30 yr prior to the index date considered previously by Krewski et al. (2005). Additional restrictions focused on subjects for which a greater proportion of the ETW was covered by measured rather than imputed radon concentrations, and on subjects who occupied at most two residences. The estimated odds ratio (OR) of lung cancer generally increased with radon concentration. The OR trend was consistent with linearity (p = .10), and the excess OR (EOR) was 0.10 per Bq/m3 with 95% confidence limits (-0.01, 0.26). For the subset of the data considered previously by Krewski et al. (2005), the EOR was 0.11 (0.00, 0.28). Further limiting subjects based on our criteria (residential stability and completeness of radon monitoring) expected to improve radon dosimetry led to increased estimates of the EOR. For example, for subjects who had resided in only one or two houses in the 5-30 ETW and who had a-track radon measurements for at least 20 yr of this 25-yr period, the EOR was 0.18 (0.02, 0.43) per 100 Bq/m3. Both estimates are compatible with the EOR of 0.12 (0.02, 0.25) per 100 Bq/m3 predicted by downward extrapolation of the miner data. Collectively, these results provide direct evidence of an association between residential radon and lung cancer risk, a finding predicted by extrapolation of results from occupational studies of radon-exposed underground miners.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environ. Health Perspect
                EHP
                Environmental Health Perspectives
                Environmental Health Perspectives
                0091-6765
                1552-9924
                16 June 2017
                June 2017
                : 125
                : 6
                : 067009
                Affiliations
                [ 1 ]Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute , Basel, Switzerland
                [ 2 ]University of Basel , Basel, Switzerland
                [ 3 ]Federal Statistical Office , Neuchâtel, Switzerland
                [ 4 ]ImmoCompass AG , Zurich, Switzerland
                [ 5 ]Institute for Risk Assessment Sciences, University Utrecht , Utrecht, the Netherlands
                Author notes
                Address correspondence to D. Vienneau, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4051, Basel, Switzerland. Telephone: 41 (0) 61-284-8398. E-mail: danielle.vienneau@ 123456unibas.ch
                Article
                EHP825
                10.1289/EHP825
                5744747
                28686556
                8310d216-0b35-4e8e-aa20-68299313b5a6

                EHP is an open-access journal published with support from the National Institute of Environmental Health Sciences, National Institutes of Health. All content is public domain unless otherwise noted.

                History
                : 19 July 2016
                : 28 October 2016
                : 15 November 2016
                Categories
                Research

                Public health
                Public health

                Comments

                Comment on this article