0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cas9 Ribonucleoprotein Delivery via Microfluidic Cell-Deformation Chip for Human T-Cell Genome Editing and Immunotherapy

      1 , 2 , 1 , 2 , 1 , 2 , 1 , 2 , 1 , 2
      Advanced Biosystems
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          The blockade of immune checkpoints in cancer immunotherapy.

          Among the most promising approaches to activating therapeutic antitumour immunity is the blockade of immune checkpoints. Immune checkpoints refer to a plethora of inhibitory pathways hardwired into the immune system that are crucial for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage. It is now clear that tumours co-opt certain immune-checkpoint pathways as a major mechanism of immune resistance, particularly against T cells that are specific for tumour antigens. Because many of the immune checkpoints are initiated by ligand-receptor interactions, they can be readily blocked by antibodies or modulated by recombinant forms of ligands or receptors. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) antibodies were the first of this class of immunotherapeutics to achieve US Food and Drug Administration (FDA) approval. Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficient Delivery of Genome-Editing Proteins In Vitro and In Vivo

            Efficient intracellular delivery of proteins is needed to fully realize the potential of protein therapeutics. Current methods of protein delivery commonly suffer from low tolerance for serum, poor endosomal escape, and limited in vivo efficacy. Here we report that common cationic lipid nucleic acid transfection reagents can potently deliver proteins that are fused to negatively supercharged proteins, that contain natural anionic domains, or that natively bind to anionic nucleic acids. This approach mediates the potent delivery of nM concentrations of Cre recombinase, TALE- and Cas9-based transcriptional activators, and Cas9:sgRNA nuclease complexes into cultured human cells in media containing 10% serum. Delivery of Cas9:sgRNA complexes resulted in up to 80% genome modification with substantially higher specificity compared to DNA transfection. This approach also mediated efficient delivery of Cre recombinase and Cas9:sgRNA complexes into the mouse inner ear in vivo, achieving 90% Cre-mediated recombination and 20% Cas9-mediated genome modification in hair cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients.

              Single murine and human intestinal stem cells can be expanded in culture over long time periods as genetically and phenotypically stable epithelial organoids. Increased cAMP levels induce rapid swelling of such organoids by opening the cystic fibrosis transmembrane conductor receptor (CFTR). This response is lost in organoids derived from cystic fibrosis (CF) patients. Here we use the CRISPR/Cas9 genome editing system to correct the CFTR locus by homologous recombination in cultured intestinal stem cells of CF patients. The corrected allele is expressed and fully functional as measured in clonally expanded organoids. This study provides proof of concept for gene correction by homologous recombination in primary adult stem cells derived from patients with a single-gene hereditary defect. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Advanced Biosystems
                Adv. Biosys.
                Wiley
                23667478
                February 2017
                February 2017
                January 16 2017
                : 1
                : 1-2
                : 1600007
                Affiliations
                [1 ]Department of Nanomedicine; Houston Methodist Research Institute; Houston TX 77030 USA
                [2 ]Department of Cell and Developmental Biology; Weill Medical College of Cornell University; New York NY 10065 USA
                Article
                10.1002/adbi.201600007
                838e29ad-b2a9-447a-a2ef-dd36b3e4c2b0
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1

                http://onlinelibrary.wiley.com/termsAndConditions

                History

                Comments

                Comment on this article