31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptome of the Deep-Sea Black Scabbardfish, Aphanopus carbo (Perciformes: Trichiuridae): Tissue-Specific Expression Patterns and Candidate Genes Associated to Depth Adaptation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Deep-sea fishes provide a unique opportunity to study the physiology and evolutionary adaptation to extreme environments. We carried out a high throughput sequencing analysis on a 454 GS-FLX titanium plate using unnormalized cDNA libraries from six tissues of A. carbo. Assemblage and annotations were performed by Newbler and InterPro/Pfam analyses, respectively. The assembly of 544,491 high quality reads provided 8,319 contigs, 55.6% of which retrieved blast hits against the NCBI nonredundant database or were annotated with ESTscan. Comparison of functional genes at both the protein sequences and protein stability levels, associated with adaptations to depth, revealed similarities between A. carbo and other bathypelagic fishes. A selection of putative genes was standardized to evaluate the correlation between number of contigs and their normalized expression, as determined by qPCR amplification. The screening of the libraries contributed to the identification of new EST simple-sequence repeats (SSRs) and to the design of primer pairs suitable for population genetic studies as well as for tagging and mapping of genes. The characterization of the deep-sea fish A. carbo first transcriptome is expected to provide abundant resources for genetic, evolutionary, and ecological studies of this species and the basis for further investigation of depth-related adaptation processes in fishes.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: not found
          • Article: not found

          Basic Local Alignment Search Tool

          S Altschul (1990)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.).

            A software tool was developed for the identification of simple sequence repeats (SSRs) in a barley ( Hordeum vulgare L.) EST (expressed sequence tag) database comprising 24,595 sequences. In total, 1,856 SSR-containing sequences were identified. Trimeric SSR repeat motifs appeared to be the most abundant type. A subset of 311 primer pairs flanking SSR loci have been used for screening polymorphisms among six barley cultivars, being parents of three mapping populations. As a result, 76 EST-derived SSR-markers were integrated into a barley genetic consensus map. A correlation between polymorphism and the number of repeats was observed for SSRs built of dimeric up to tetrameric units. 3'-ESTs yielded a higher portion of polymorphic SSRs (64%) than 5'-ESTs did. The estimated PIC (polymorphic information content) value was 0.45 +/- 0.03. Approximately 80% of the SSR-markers amplified DNA fragments in Hordeum bulbosum, followed by rye, wheat (both about 60%) and rice (40%). A subset of 38 EST-derived SSR-markers comprising 114 alleles were used to investigate genetic diversity among 54 barley cultivars. In accordance with a previous, RFLP-based, study, spring and winter cultivars, as well as two- and six-rowed barleys, formed separate clades upon PCoA analysis. The results show that: (1) with the software tool developed, EST databases can be efficiently exploited for the development of cDNA-SSRs, (2) EST-derived SSRs are significantly less polymorphic than those derived from genomic regions, (3) a considerable portion of the developed SSRs can be transferred to related species, and (4) compared to RFLP-markers, cDNA-SSRs yield similar patterns of genetic diversity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sequencing breakthroughs for genomic ecology and evolutionary biology.

              Techniques involving whole-genome sequencing and whole-population sequencing (metagenomics) are beginning to revolutionize the study of ecology and evolution. This revolution is furthest advanced in the Bacteria and Archaea, and more sequence data are required for genomic ecology to be fully applied to the majority of eukaryotes. Recently developed next-generation sequencing technologies provide practical, massively parallel sequencing at lower cost and without the requirement for large, automated facilities, making genome and transcriptome sequencing and resequencing possible for more projects and more species. These sequencing methods include the 454 implementation of pyrosequencing, Solexa/Illumina reversible terminator technologies, polony sequencing and AB SOLiD. All of these methods use nanotechnology to generate hundreds of thousands of small sequence reads at one time. These technologies have the potential to bring the genomics revolution to whole populations, and to organisms such as endangered species or species of ecological and evolutionary interest. A future is now foreseeable where ecologists may resequence entire genomes from wild populations and perform population genetic studies at a genome, rather than gene, level. The new technologies for high throughput sequencing, their limitations and their applicability to evolutionary and environmental studies, are discussed in this review. © 2007 The Authors.
                Bookmark

                Author and article information

                Journal
                Int J Genomics
                Int J Genomics
                IJG
                International Journal of Genomics
                Hindawi Publishing Corporation
                2314-436X
                2314-4378
                2014
                17 September 2014
                : 2014
                : 267482
                Affiliations
                1ISSIA-CNR, Via de Marini 6, 16149 Genova, Italy
                2LARSyS, Associated Laboratory & Centre of IMAR of the University of the Azores, Department of Oceanography and Fisheries, Rua Prof. Frederico Machado 4, 9901-862 Horta, Azores, Portugal
                3School of Medicine, University of St Andrews, North Haugh, St Andrews KY16 9TF, UK
                4Department of Life Sciences, University of Trieste, Piazzale Valmaura, 9, 34148 Trieste, Italy
                5Institute of Marine Sciences, National Research Council (ISMAR-CNR), Castello 2437/F, 30122 Venezia, Italy
                Author notes

                Academic Editor: Elena Pasyukova

                Article
                10.1155/2014/267482
                4182897
                83a6e523-d04f-4ace-98ba-73ea4fa73f00
                Copyright © 2014 Sergio Stefanni et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 May 2014
                : 19 July 2014
                Categories
                Research Article

                Comments

                Comment on this article