76
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Developmental regulation of MURF ubiquitin ligases and autophagy proteins nbr1, p62/SQSTM1 and LC3 during cardiac myofibril assembly and turnover

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The striated muscle-specific tripartite motif (TRIM) proteins TRIM63/MURF1, TRIM55/MURF2 and TRIM54/MURF3 can function as ubiquitin E3 ligases in ubiquitin-mediated muscle protein turnover. Despite their well-characterised roles in muscle atrophy, the dynamics of MURF expression in the development and early postnatal adaptation of striated muscle is largely unknown. Here, we show that MURF2 is expressed at the very onset of mouse cardiac differentiation at embryonic day 8.5, and represents a sensitive marker for differentiating myocardium. During cardiac development, expression shifts from the 50 kDa to the 60 kDa A-isoform, which dominates postnatally. In contrast, MURF1 shows strong postnatal upregulation and MURF3 is not significantly expressed before birth. MURF2 expression parallels that of the autophagy-associated proteins LC3, p62/SQSTM1 and nbr1. SiRNA knockdown of MURF2 in neonatal rat cardiomyocytes disrupts posttranslational microtubule modification and myofibril assembly, and is only partly compensated by upregulation of MURF3 but not MURF1. Knockdown of both MURF2 and MURF3 severely disrupts the formation of ordered Z- and M-bands, likely by perturbed tubulin dynamics. These results suggest that ubiquitin-mediated protein turnover and MURF2 in particular play an unrecognised role in the earliest steps of heart muscle differentiation, and that partial complementation of MURF2 deficiency is afforded by MURF3.

          Research Highlights

          ► MURF muscle ubiquitin ligases are developmentally regulated in mouse heart. ► MURF2 is the dominant cardiac MURF isogene expressed from mouse E8.5 onwards. ► MURF2 regulates microtubule dynamics in cardiac sarcomere assembly in vitro. ► MURF 2 and 3 show partial functional compensation in sarcomere assembly.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor.

          The biochemical properties of beclin 1 suggest a role in two fundamentally important cell biological pathways: autophagy and apoptosis. We show here that beclin 1-/- mutant mice die early in embryogenesis and beclin 1+/- mutant mice suffer from a high incidence of spontaneous tumors. These tumors continue to express wild-type beclin 1 mRNA and protein, establishing that beclin 1 is a haploinsufficient tumor suppressor gene. Beclin 1-/- embryonic stem cells have a severely altered autophagic response, whereas their apoptotic response to serum withdrawal or UV light is normal. These results demonstrate that beclin 1 is a critical component of mammalian autophagy and establish a role for autophagy in tumor suppression. They both provide a biological explanation for recent evidence implicating beclin 1 in human cancer and suggest that mutations in other genes operating in this pathway may contribute to tumor formation through deregulation of autophagy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            p62 at the crossroads of autophagy, apoptosis, and cancer.

            The signaling adaptor p62 is a multidomain protein implicated in the activation of the transcription factor NF-kappaB. Recent findings link p62 activity to the extrinsic apoptosis pathway, and Mathew et al. (2009) now show that the modulation of p62 by autophagy is a key factor in tumorigenesis. These findings place p62 at critical decision points that control cell death and survival.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A role for NBR1 in autophagosomal degradation of ubiquitinated substrates.

              Autophagy is a catabolic process where cytosolic cellular components are delivered to the lysosome for degradation. Recent studies have indicated the existence of specific receptors, such as p62, which link ubiquitinated targets to autophagosomal degradation pathways. Here we show that NBR1 (neighbor of BRCA1 gene 1) is an autophagy receptor containing LC3- and ubiquitin (Ub)-binding domains. NBR1 is recruited to Ub-positive protein aggregates and degraded by autophagy depending on an LC3-interacting region (LIR) and LC3 family modifiers. Although NBR1 and p62 interact and form oligomers, they can function independently, as shown by autophagosomal clearance of NBR1 in p62-deficient cells. NBR1 was localized to Ub-positive inclusions in patients with liver dysfunction, and depletion of NBR1 abolished the formation of Ub-positive p62 bodies upon puromycin treatment of cells. We propose that NBR1 and p62 act as receptors for selective autophagosomal degradation of ubiquitinated targets.
                Bookmark

                Author and article information

                Journal
                Dev Biol
                Dev. Biol
                Developmental Biology
                Elsevier
                0012-1606
                1095-564X
                01 March 2011
                01 March 2011
                : 351
                : 1
                : 46-61
                Affiliations
                King's College London BHF Centre of Research Excellence, Randall Division for Cell and Molecular Biophysics and Cardiovascular Division, New Hunt's House, Guy's Campus, London SE1 1UL, UK
                Author notes
                [* ]Corresponding author. King's College London, The Randall Division for Cell and Molecular Biophysics, London SE1 1UL, UK. Fax: + 44 207 848 6435. mathias.gautel@ 123456kcl.ac.uk
                Article
                YDBIO5112
                10.1016/j.ydbio.2010.12.024
                3047806
                21185285
                83a83c4c-dc49-463f-acc6-07a6d0095302
                © 2011 Elsevier Inc.

                This document may be redistributed and reused, subject to certain conditions.

                History
                : 3 April 2010
                : 14 December 2010
                : 15 December 2010
                Categories
                Article

                Developmental biology
                murf2 isoforms,titin,microtubule dynamics,a170,p62,cardiac development,sqstm1,ubiquitin e3 ligase,myofibrils,nbr1

                Comments

                Comment on this article