Search for authorsSearch for similar articles
22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans.

      Journal of Applied Physiology
      Adaptation, Physiological, physiology, Adult, Citrate (si)-Synthase, metabolism, Energy Metabolism, Exercise, Female, Glycogen, Humans, Male, Muscle, Skeletal, Oxidation-Reduction, Oxygen Consumption, Physical Endurance, Physical Exertion

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parra et al. (Acta Physiol. Scand 169: 157-165, 2000) showed that 2 wk of daily sprint interval training (SIT) increased citrate synthase (CS) maximal activity but did not change "anaerobic" work capacity, possibly because of chronic fatigue induced by daily training. The effect of fewer SIT sessions on muscle oxidative potential is unknown, and aside from changes in peak oxygen uptake (Vo(2 peak)), no study has examined the effect of SIT on "aerobic" exercise capacity. We tested the hypothesis that six sessions of SIT, performed over 2 wk with 1-2 days rest between sessions to promote recovery, would increase CS maximal activity and endurance capacity during cycling at approximately 80% Vo(2 peak). Eight recreationally active subjects [age = 22 +/- 1 yr; Vo(2 peak) = 45 +/- 3 ml.kg(-1).min(-1) (mean +/- SE)] were studied before and 3 days after SIT. Each training session consisted of four to seven "all-out" 30-s Wingate tests with 4 min of recovery. After SIT, CS maximal activity increased by 38% (5.5 +/- 1.0 vs. 4.0 +/- 0.7 mmol.kg protein(-1).h(-1)) and resting muscle glycogen content increased by 26% (614 +/- 39 vs. 489 +/- 57 mmol/kg dry wt) (both P < 0.05). Most strikingly, cycle endurance capacity increased by 100% after SIT (51 +/- 11 vs. 26 +/- 5 min; P < 0.05), despite no change in Vo(2 peak). The coefficient of variation for the cycle test was 12.0%, and a control group (n = 8) showed no change in performance when tested approximately 2 wk apart without SIT. We conclude that short sprint interval training (approximately 15 min of intense exercise over 2 wk) increased muscle oxidative potential and doubled endurance capacity during intense aerobic cycling in recreationally active individuals.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: not found
          • Article: not found

          Percutaneous needle biopsy of skeletal muscle in physiological and clinical research.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adaptations of skeletal muscle to endurance exercise and their metabolic consequences.

            Regularly performed endurance exercise induces major adaptations in skeletal muscle. These include increases in the mitochondrial content and respiratory capacity of the muscle fibers. As a consequence of the increase in mitochondria, exercise of the same intensity results in a disturbance in homeostasis that is smaller in trained than in untrained muscles. The major metabolic consequences of the adaptations of muscle to endurance exercise are a slower utilization of muscle glycogen and blood glucose, a greater reliance on fat oxidation, and less lactate production during exercise of a given intensity. These adaptations play an important role in the large increase in the ability to perform prolonged strenuous exercise that occurs in response to endurance exercise training.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise.

              This study examined the contribution of phosphocreatine (PCr) and aerobic metabolism during repeated bouts of sprint exercise. Eight male subjects performed two cycle ergometer sprints separated by 4 min of recovery during two separate main trials. Sprint 1 lasted 30 s during both main trials, whereas sprint 2 lasted either 10 or 30 s. Muscle biopsies were obtained at rest, immediately after the first 30-s sprint, after 3.8 min of recovery, and after the second 10- and 30-s sprints. At the end of sprint 1, PCr was 16.9 +/- 1.4% of the resting value, and muscle pH dropped to 6.69 +/- 0.02. After 3.8 min of recovery, muscle pH remained unchanged (6.80 +/- 0.03), but PCr was resynthesized to 78.7 +/- 3.3% of the resting value. PCr during sprint 2 was almost completely utilized in the first 10 s and remained unchanged thereafter. High correlations were found between the percentage of PCr resynthesis and the percentage recovery of power output and pedaling speed during the initial 10 s of sprint 2 (r = 0.84, P < 0.05 and r = 0.91, P < 0.01). The anaerobic ATP turnover, as calculated from changes in ATP, PCr, and lactate, was 235 +/- 9 mmol/kg dry muscle during the first sprint but was decreased to 139 +/- 7 mmol/kg dry muscle during the second 30-s sprint, mainly as a result of a approximately 45% decrease in glycolysis. Despite this approximately 41% reduction in anaerobic energy, the total work done during the second 30-s sprint was reduced by only approximately 18%. This mismatch between anaerobic energy release and power output during sprint 2 was partly compensated for by an increased contribution of aerobic metabolism, as calculated from the increase in oxygen uptake during sprint 2 (2.68 +/- 0.10 vs. 3.17 +/- 0.13 l/min; sprint 1 vs. sprint 2; P < 0.01). These data suggest that aerobic metabolism provides a significant part (approximately 49%) of the energy during the second sprint, whereas PCr availability is important for high power output during the initial 10 s.
                Bookmark

                Author and article information

                Comments

                Comment on this article