54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Extraordinary Evolutionary History of the Reticuloendotheliosis Viruses

      research-article
      , *
      PLoS Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reticuloendotheliosis viruses are mammalian retroviruses that were transmitted to avian hosts through inadvertent human intervention, and subsequently integrated their genetic material into the genomes of large DNA viruses, generating novel recombinant pathogens that now circulate naturally in poultry and wild birds.

          Abstract

          The reticuloendotheliosis viruses (REVs) comprise several closely related amphotropic retroviruses isolated from birds. These viruses exhibit several highly unusual characteristics that have not so far been adequately explained, including their extremely close relationship to mammalian retroviruses, and their presence as endogenous sequences within the genomes of certain large DNA viruses. We present evidence for an iatrogenic origin of REVs that accounts for these phenomena. Firstly, we identify endogenous retroviral fossils in mammalian genomes that share a unique recombinant structure with REVs—unequivocally demonstrating that REVs derive directly from mammalian retroviruses. Secondly, through sequencing of archived REV isolates, we confirm that contaminated Plasmodium lophurae stocks have been the source of multiple REV outbreaks in experimentally infected birds. Finally, we show that both phylogenetic and historical evidence support a scenario wherein REVs originated as mammalian retroviruses that were accidentally introduced into avian hosts in the late 1930s, during experimental studies of P. lophurae, and subsequently integrated into the fowlpox virus (FWPV) and gallid herpesvirus type 2 (GHV-2) genomes, generating recombinant DNA viruses that now circulate in wild birds and poultry. Our findings provide a novel perspective on the origin and evolution of REV, and indicate that horizontal gene transfer between virus families can expand the impact of iatrogenic transmission events.

          Author Summary

          Retroviruses are characterized by their ability to insert a DNA copy of their genome into the chromosomes of infected cells. Occasionally, retroviruses insert into “germline” cells and are subsequently inherited as host alleles called endogenous retroviruses (ERVs). Vertebrate genomes contain thousands of ERV sequences derived from ancient retroviruses, and these viral sequences serve as molecular “fossils” that can be used to explore how retroviruses have evolved over millions of years. Here we combine an analysis of the retroviral “fossil record” with a phylogenetic and historical investigation to determine the origin of a group of avian retroviruses called reticuloendotheliosis viruses (REVs). We present evidence to demonstrate that rather than arising from natural infections of birds, REVs are in fact derived from mammalian retroviruses that were accidentally introduced into avian hosts during experimental studies of a malaria parasite in the late 1930s. Remarkably, REVs have subsequently inserted into the genomes of two large DNA viruses that infect birds, generating chimeric viruses that now circulate naturally in poultry and wild birds.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          ProtTest: selection of best-fit models of protein evolution.

          Using an appropriate model of amino acid replacement is very important for the study of protein evolution and phylogenetic inference. We have built a tool for the selection of the best-fit model of evolution, among a set of candidate models, for a given protein sequence alignment. ProtTest is available under the GNU license from http://darwin.uvigo.es
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The general stochastic model of nucleotide substitution.

            DNA sequence evolution through nucleotide substitution may be assimilated to a stationary Markov process. The fundamental equations of the general model, with 12 independent substitution parameters, are used to obtain a formula which corrects the effect of multiple and parallel substitutions on the measure of evolutionary divergence between two homologous sequences. We show that only reversible models, with six independent parameters, allow the calculation of the substitution rates. Simulation experiments on DNA sequence evolution through nucleotide substitution call into question the effectiveness of the general model (and of any other more detailed description); nevertheless, the general model results are slightly superior to any of its particular cases.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              PAML: a program package for phylogenetic analysis by maximum likelihood

                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                August 2013
                August 2013
                27 August 2013
                : 11
                : 8
                : e1001642
                Affiliations
                [1]Aaron Diamond AIDS Research Center, New York, New York, United States of America
                University of Wisconsin-Madison, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: AMN RJG. Performed the experiments: AMN RJG. Analyzed the data: AMN RJG. Contributed reagents/materials/analysis tools: RJG. Wrote the paper: RJG.

                Article
                PBIOLOGY-D-13-00757
                10.1371/journal.pbio.1001642
                3754887
                24013706
                84cf5005-6a3e-4f3e-97ef-84b6680b2a35
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 25 February 2013
                : 19 July 2013
                Page count
                Pages: 16
                Funding
                This study was funded by the Aaron Diamond Research Center. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational Biology
                Genomics
                Comparative Genomics
                Genome Databases
                Sequence Analysis
                Evolutionary Biology
                Evolutionary Processes
                Adaptation
                Emergence
                Natural Selection
                Evolutionary Genetics
                Microbiology
                Virology
                Co-Infections
                Emerging Viral Diseases
                Viral Disease Diagnosis
                Viral Evolution
                Viral Immune Evasion
                Viral Vaccines
                Viruses and Cancer
                Parasitology
                Zoology
                Mammalogy
                Veterinary Science
                Veterinary Diseases
                Veterinary Virology
                Veterinary Epidemiology
                Veterinary Microbiology

                Life sciences
                Life sciences

                Comments

                Comment on this article