2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Potential for Manganese-Induced Neurologic Harm to Formula-Fed Infants: A Risk Assessment of Total Oral Exposure

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          High oral exposure and biological vulnerabilities may put formula-fed infants at risk for manganese-induced neurotoxicity.

          Objectives:

          We sought to characterize manganese concentrations in public drinking water and prepared infant formulas commonly purchased in the United States, integrate information from these sources into a health risk assessment specific to formula-fed infants, and examine whether households that receive water with elevated manganese concentrations avoid or treat the water, which has implications for formula preparation.

          Methods:

          Manganese was measured in 27 infant formulas and nearly all Minnesota community public water systems (CPWS). The risk assessment produced central tendency and upper-end exposure estimates that were compared to a neonatal animal-based health reference dose (RfD) and considered possible differences in bioavailability. A survey study assessed esthetic concerns, treatment, and use of water in a Twin Cities community with various levels of manganese in drinking water.

          Results:

          Ten percent of CPWSs were estimated to exceed the EPA health advisory level of 300 μ g / L . Manganese concentrations in formula ranged from 69.8 to 741 μ g / L , with amino acid > soy > cow s   milk formula concentrations. Central tendency estimates of soy and amino acid formula reconstituted with water at the CPWS 95th percentile manganese concentration exceeded the neonatal-based RfD. Upper-end estimates of manganese intake from formula alone, independent of any water contribution, equaled or exceeded the neonatal-based RfD. In the survey study, we observed increased awareness of esthetic issues and water avoidance at higher manganese concentrations, but these concentrations were not a reliable consumption deterrent, as the majority of households with inside tap drinking water results above 300 μ g / L reported drinking the water.

          Discussion:

          Excessive exposure to manganese early in life can have long-lasting neurological impacts. This assessment underscores the potential for manganese overexposure in formula-fed infants. U.S. agencies that regulate formula and drinking water must work collaboratively to assess and mitigate potential risks. https://doi.org/10.1289/EHP7901

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Nutritional aspects of manganese homeostasis.

          Manganese (Mn) is an essential mineral. It is present in virtually all diets at low concentrations. The principal route of intake for Mn is via food consumption, but in occupational cohorts, inhalation exposure may also occur (this subject will not be dealt with in this review). Humans maintain stable tissue levels of Mn. This is achieved via tight homeostatic control of both absorption and excretion. Nevertheless, it is well established that exposure to high oral, parenteral or ambient air concentrations of Mn can result in elevations in tissue Mn levels. Excessive Mn accumulation in the central nervous system (CNS) is an established clinical entity, referred to as manganism. It resembles idiopathic Parkinson's disease (IPD) in its clinical features, resulting in adverse neurological effects both in laboratory animals and humans. This review focuses on an area that to date has received little consideration, namely the potential exposure of parenterally fed neonates to exceedingly high Mn concentrations in parenteral nutrition solutions, potentially increasing their risk for Mn-induced adverse health sequelae. The review will consider (1) the essentiality of Mn; (2) the concentration ranges, means and variation of Mn in various foods and infant formulas; (3) the absorption, distribution, and elimination of Mn after oral exposure and (4) the factors that raise a theoretical concern that neonates receiving total parenteral nutrition (TPN) are exposed to excessive dietary Mn.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Manganese Toxicity Upon Overexposure: a Decade in Review.

            Exposure to manganese (Mn) causes clinical signs and symptoms resembling, but not identical to, Parkinson's disease. Since our last review on this subject in 2004, the past decade has been a thriving period in the history of Mn research. This report provides a comprehensive review on new knowledge gained in the Mn research field. Emerging data suggest that beyond traditionally recognized occupational manganism, Mn exposures and the ensuing toxicities occur in a variety of environmental settings, nutritional sources, contaminated foods, infant formulas, and water, soil, and air with natural or man-made contaminations. Upon fast absorption into the body via oral and inhalation exposures, Mn has a relatively short half-life in blood, yet fairly long half-lives in tissues. Recent data suggest Mn accumulates substantially in bone, with a half-life of about 8-9 years expected in human bones. Mn toxicity has been associated with dopaminergic dysfunction by recent neurochemical analyses and synchrotron X-ray fluorescent imaging studies. Evidence from humans indicates that individual factors such as age, gender, ethnicity, genetics, and pre-existing medical conditions can have profound impacts on Mn toxicities. In addition to body fluid-based biomarkers, new approaches in searching biomarkers of Mn exposure include Mn levels in toenails, non-invasive measurement of Mn in bone, and functional alteration assessments. Comments and recommendations are also provided with regard to the diagnosis of Mn intoxication and clinical intervention. Finally, several hot and promising research areas in the next decade are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intellectual Impairment in School-Age Children Exposed to Manganese from Drinking Water

              Background Manganese is an essential nutrient, but in excess it can be a potent neurotoxicant. Despite the common occurrence of manganese in groundwater, the risks associated with this source of exposure are largely unknown. Objectives Our first aim was to assess the relations between exposure to manganese from drinking water and children’s intelligence quotient (IQ). Second, we examined the relations between manganese exposures from water consumption and from the diet with children’s hair manganese concentration. Methods This cross-sectional study included 362 children 6–13 years of age living in communities supplied by groundwater. Manganese concentration was measured in home tap water (MnW) and children’s hair (MnH). We estimated manganese intake from water ingestion and the diet using a food frequency questionnaire and assessed IQ with the Wechsler Abbreviated Scale of Intelligence. Results The median MnW in children’s home tap water was 34 μg/L (range, 1–2,700 μg/L). MnH increased with manganese intake from water consumption, but not with dietary manganese intake. Higher MnW and MnH were significantly associated with lower IQ scores. A 10-fold increase in MnW was associated with a decrease of 2.4 IQ points (95% confidence interval: −3.9 to −0.9; p < 0.01), adjusting for maternal intelligence, family income, and other potential confounders. There was a 6.2-point difference in IQ between children in the lowest and highest MnW quintiles. MnW was more strongly associated with Performance IQ than Verbal IQ. Conclusions The findings of this cross-sectional study suggest that exposure to manganese at levels common in groundwater is associated with intellectual impairment in children.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environ Health Perspect
                EHP
                Environmental Health Perspectives
                Environmental Health Perspectives
                0091-6765
                1552-9924
                13 April 2021
                April 2021
                : 129
                : 4
                : 047011
                Affiliations
                [ 1 ]Minnesota Department of Health, Saint Paul, Minnesota, USA
                Author notes
                Address correspondence to Deanna P. Scher, P.O. Box 64975, St. Paul, MN 55164-0975, USA. Telephone: 651-201-4922. Email: Deanna.scher@ 123456state.mn.us
                Article
                EHP7901
                10.1289/EHP7901
                8043326
                33848192
                84f580db-45f7-4456-8fa5-5c2a21013cb8

                EHP is an open-access journal published with support from the National Institute of Environmental Health Sciences, National Institutes of Health. All content is public domain unless otherwise noted.

                History
                : 15 July 2020
                : 22 February 2021
                : 16 March 2021
                Categories
                Research

                Public health
                Public health

                Comments

                Comment on this article