9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cofilin-mediated sorting and export of specific cargo from the Golgi apparatus in yeast

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sorting of secretory cargo from the Golgi remains an elusive process. Previously a role was identified for cofilin and the Ca 2+ATPase SPCA1 in sorting of secretory cargo from the Golgi of mammalian cells. Now it is shown that the yeast orthologues cofilin and Pmr1 are also required for sorting of selective secretory cargo at the Golgi in yeast.

          Abstract

          The mechanism of cargo sorting at the trans-Golgi network (TGN) for secretion is poorly understood. We previously reported the involvement of the actin-severing protein cofilin and the Ca 2+ ATPase secretory pathway calcium ATPase 1 (SPCA1) in the sorting of soluble secretory cargo at the TGN in mammalian cells. Now we report that cofilin in yeast is required for export of selective secretory cargo at the late Golgi membranes. In cofilin mutant ( cof1-8) cells, the cell wall protein Bgl2 was secreted at a reduced rate and retained in a late Golgi compartment, whereas the plasma membrane H + ATPase Pma1, which is transported in the same class of carriers, reached the cell surface. In addition, sorting of carboxypeptidase Y (CPY) to the vacuole was delayed, and CPY was secreted from cof1-8 cells. Loss of the yeast orthologue of SPCA1 (Pmr1) exhibited similar sorting defects and displayed synthetic sickness with cof1-8. In addition, overexpression of PMR1 restored Bgl2 secretion in cof1-8 cells. These findings highlight the conserved role of cofilin and SPCA1/Pmr1 in sorting of the soluble secretory proteins at the TGN/late Golgi membranes in eukaryotes.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          The mechanisms of vesicle budding and fusion.

          Genetic and biochemical analyses of the secretory pathway have produced a detailed picture of the molecular mechanisms involved in selective cargo transport between organelles. This transport occurs by means of vesicular intermediates that bud from a donor compartment and fuse with an acceptor compartment. Vesicle budding and cargo selection are mediated by protein coats, while vesicle targeting and fusion depend on a machinery that includes the SNARE proteins. Precise regulation of these two aspects of vesicular transport ensures efficient cargo transfer while preserving organelle identity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast

            SD Emr (1995)
            We have used a lipophilic styryl dye, N-(3-triethylammoniumpropyl)-4- (p-diethylaminophenyl-hexatrienyl) pyridinium dibromide (FM 4-64), as a vital stain to follow bulk membrane-internalization and transport to the vacuole in yeast. After treatment for 60 min at 30 degrees C, FM 4- 64 stained the vacuole membrane (ring staining pattern). FM 4-64 did not appear to reach the vacuole by passive diffusion because at 0 degree C it exclusively stained the plasma membrane (PM). The PM staining decreased after warming cells to 25 degrees C and small punctate structures became apparent in the cytoplasm within 5-10 min. After an additional 20-40 min, the PM and cytoplasmic punctate staining disappeared concomitant with staining of the vacuolar membrane. Under steady state conditions, FM 4-64 staining was specific for vacuolar membranes; other membrane structures were not stained. The dye served as a sensitive reporter of vacuolar dynamics, detecting such events as segregation structure formation during mitosis, vacuole fission/fusion events, and vacuolar morphology in different classes of vacuolar protein sorting (vps) mutants. A particularly striking pattern was observed in class E mutants (e.g., vps27) where 500-700 nm organelles (presumptive prevacuolar compartments) were intensely stained with FM 4- 64 while the vacuole membrane was weakly fluorescent. Internalization of FM 4-64 at 15 degrees C delayed vacuolar labeling and trapped FM 4- 64 in cytoplasmic intermediates between the PM and the vacuole. The intermediate structures in the cytoplasm are likely to be endosomes as their staining was temperature, time, and energy dependent. Interestingly, unlike Lucifer yellow uptake, vacuolar labeling by FM 4- 64 was not blocked in sec18, sec14, end3, and end4 mutants, but was blocked in sec1 mutant cells. Finally, using permeabilized yeast spheroplasts to reconstitute FM 4-64 transport, we found that delivery of FM 4-64 from the endosome-like intermediate compartment (labeled at 15 degrees C) to the vacuole was ATP and cytosol dependent. Thus, we show that FM 4-64 is a new vital stain for the vacuolar membrane, a marker for endocytic intermediates, and a fluor for detecting endosome to vacuole membrane transport in vitro.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bi-directional protein transport between the ER and Golgi.

              The endoplasmic reticulum (ER) and the Golgi comprise the first two steps in protein secretion. Vesicular carriers mediate a continuous flux of proteins and lipids between these compartments, reflecting the transport of newly synthesized proteins out of the ER and the retrieval of escaped ER residents and vesicle machinery. Anterograde and retrograde transport is mediated by distinct sets of cytosolic coat proteins, the COPII and COPI coats, respectively, which act on the membrane to capture cargo proteins into nascent vesicles. We review the mechanisms that govern coat recruitment to the membrane, cargo capture into a transport vesicle, and accurate delivery to the target organelle.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                Mol. Biol. Cell
                molbiolcell
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                15 June 2012
                : 23
                : 12
                : 2327-2338
                Affiliations
                [1] aDepartment of Cell and Developmental Biology, Centre for Genomic Regulation, 08003 Barcelona, Spain
                [2] bMax Planck Institute for Biochemistry, 82152 Martinsried, Germany
                [3] cInstitució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
                Carnegie Mellon University
                Author notes
                *Address correspondence to: Amy J. Curwin ( Amy.Curwin@ 123456crg.eu ), Vivek Malhotra ( Vivek.Malhotra@ 123456crg.eu ).
                Article
                E11-09-0826
                10.1091/mbc.E11-09-0826
                3374751
                22553351
                858da5a4-bd65-4875-b443-59f0907dcf03
                © 2012 Curwin et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology.

                History
                : 30 September 2011
                : 19 April 2012
                : 24 April 2012
                Categories
                Articles
                Membrane Trafficking

                Molecular biology
                Molecular biology

                Comments

                Comment on this article