1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inflammatory effect of Bothropstoxin-I from Bothrops jararacussu venom mediated by NLRP3 inflammasome involves ATP and P2X7 receptor

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Muscle tissue damage is one of the local effects described in bothropic envenomations. Bothropstoxin-I (BthTX-I), from Bothrops jararacussu venom, is a K49-phospholipase A2 (PLA2) that induces a massive muscle tissue injury, and, consequently, local inflammatory reaction. The NLRP3 inflammasome is a sensor that triggers inflammation by activating caspase 1 and releasing interleukin (IL)-1β and/or inducing pyroptotic cell death in response to tissue damage. We, therefore, aimed to address activation of NLRP3 inflammasome by BthTX-I-associated injury and the mechanism involved in this process. Intramuscular injection of BthTX-I results in infiltration of neutrophils and macrophages in gastrocnemius muscle, which is reduced in NLRP3- and Caspase-1-deficient mice. The in vitro IL-1β production induced by BthTX-I in peritoneal macrophages (PMs) requires caspase 1/11, ASC and NLRP3 and is dependent on adenosine 5′-triphosphate (ATP)-induced K+ efflux and P2X7 receptor (P2X7R). BthTX-I induces a dramatic release of ATP from C2C12 myotubes, therefore representing the major mechanism for P2X7R-dependent inflammasome activation in macrophages. A similar result was obtained when human monocyte-derived macrophages (HMDMs) were treated with BthTX-I. These findings demonstrated the inflammatory effect of BthTX-I on muscle tissue, pointing out a role for the ATP released by damaged cells for the NLRP3 activation on macrophages, contributing to the understanding of the microenvironment of the tissue damage of the Bothrops envenomation.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Pathogen recognition and innate immunity.

          Microorganisms that invade a vertebrate host are initially recognized by the innate immune system through germline-encoded pattern-recognition receptors (PRRs). Several classes of PRRs, including Toll-like receptors and cytoplasmic receptors, recognize distinct microbial components and directly activate immune cells. Exposure of immune cells to the ligands of these receptors activates intracellular signaling cascades that rapidly induce the expression of a variety of overlapping and unique genes involved in the inflammatory and immune responses. New insights into innate immunity are changing the way we think about pathogenesis and the treatment of infectious diseases, allergy, and autoimmunity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Macrophage biology in development, homeostasis and disease.

            Macrophages, the most plastic cells of the haematopoietic system, are found in all tissues and show great functional diversity. They have roles in development, homeostasis, tissue repair and immunity. Although tissue macrophages are anatomically distinct from one another, and have different transcriptional profiles and functional capabilities, they are all required for the maintenance of homeostasis. However, these reparative and homeostatic functions can be subverted by chronic insults, resulting in a causal association of macrophages with disease states. In this Review, we discuss how macrophages regulate normal physiology and development, and provide several examples of their pathophysiological roles in disease. We define the 'hallmarks' of macrophages according to the states that they adopt during the performance of their various roles, taking into account new insights into the diversity of their lineages, identities and regulation. It is essential to understand this diversity because macrophages have emerged as important therapeutic targets in many human diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gout-associated uric acid crystals activate the NALP3 inflammasome.

              Development of the acute and chronic inflammatory responses known as gout and pseudogout are associated with the deposition of monosodium urate (MSU) or calcium pyrophosphate dihydrate (CPPD) crystals, respectively, in joints and periarticular tissues. Although MSU crystals were first identified as the aetiological agent of gout in the eighteenth century and more recently as a 'danger signal' released from dying cells, little is known about the molecular mechanisms underlying MSU- or CPPD-induced inflammation. Here we show that MSU and CPPD engage the caspase-1-activating NALP3 (also called cryopyrin) inflammasome, resulting in the production of active interleukin (IL)-1beta and IL-18. Macrophages from mice deficient in various components of the inflammasome such as caspase-1, ASC and NALP3 are defective in crystal-induced IL-1beta activation. Moreover, an impaired neutrophil influx is found in an in vivo model of crystal-induced peritonitis in inflammasome-deficient mice or mice deficient in the IL-1beta receptor (IL-1R). These findings provide insight into the molecular processes underlying the inflammatory conditions of gout and pseudogout, and further support a pivotal role of the inflammasome in several autoinflammatory diseases.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Clinical Science
                Portland Press Ltd.
                0143-5221
                1470-8736
                March 2021
                March 12 2021
                March 2021
                March 12 2021
                March 09 2021
                : 135
                : 5
                : 687-701
                Affiliations
                [1 ]Laboratory of Immunopathology, Butantan Institute, São Paulo, Brazil
                [2 ]Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
                [3 ]Department of Pharmacology and Department of Immunology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
                [4 ]Department of Biological Sciences and Center for Cellular and Molecular Therapy (CTC-Mol),Federal University of São Paulo, São Paulo, Brazil
                Article
                10.1042/CS20201419
                33620070
                85903014-476a-40b7-aa48-dc4ee36ac6bd
                © 2021

                http://creativecommons.org/licenses/by/2.0/

                History

                Comments

                Comment on this article