Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Aging affects high-density lipoprotein composition and function

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most coronary deaths occur in patients older than 65 years. Age associated alterations in the composition and function of high-density lipoproteins (HDL) may contribute to cardiovascular mortality. The effect of advanced age on the composition and function of HDL is not well understood.

          HDL was isolated from healthy young and elderly subjects. HDL composition, cellular cholesterol efflux/uptake, anti-oxidant properties and paraoxonase activity were assessed. We observed a 3-fold increase of the acute phase protein serum amyloid A, an increased content of complement C3 and proteins involved in endopeptidase/protease inhibition in HDL of elderly subjects, whereas levels of apolipoprotein E were significantly decreased. HDL from elderly subjects contained less cholesterol but increased sphingomyelin. Most importantly, HDL from elderly subjects showed defective antioxidant properties, lower paraoxonase 1 activity and was more rapidly taken up by macrophages, whereas cholesterol efflux capability was not altered.

          These findings suggest that aging alters HDL composition, resulting in functional impairment that may contribute to the onset/progression of cardiovascular disease.

          Graphical abstract

          Highlights

          • Aging remodels HDL protein and lipid composition.

          • HDL from elderly subjects shows defective antioxidant properties and reduced paraoxonase 1 activity.

          • Lipids from HDL of elderly subjects are more rapidly taken up by macrophages.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study.

          The first report from the Framingham Study that demonstrated an inverse relationship between high-density lipoprotein cholesterol (HDL-C) and the incidence of coronary heart disease (CHD) was based on four years of surveillance. These participants, aged 49 to 82 years, have now been followed up for 12 years, and this report shows that the relationship between the fasting HDL-C level and subsequent incidence of CHD does not diminish appreciably with time. Since a second measurement of HDL-C is available eight years after the initial determination, the relationship of HDL-C measurements on the same subjects at two points in time is examined. This second HDL-C measurement is also used in a multivariate model that includes cigarette smoking, relative weight, alcohol consumption, casual blood glucose, total cholesterol, and blood pressure. It is concluded that even after these adjustments, nonfasting HDL-C and total cholesterol levels are related to development of CHD in both men and women aged 49 years and older. Study participants at the 80th percentile of HDL-C were found to have half the risk of CHD developing when compared with subjects at the 20th percentile of HDL-C.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase.

            HDL levels are inversely related to the risk of developing atherosclerosis. In serum, paraoxonase (PON) is associated with HDL, and was shown to inhibit LDL oxidation. Whether PON also protects HDL from oxidation is unknown, and was determined in the present study. In humans, we found serum HDL PON activity and HDL susceptibility to oxidation to be inversely correlated (r2 = 0.77, n = 15). Supplementing human HDL with purified PON inhibited copper-induced HDL oxidation in a concentration-dependent manner. Adding PON to HDL prolonged the oxidation lag phase and reduced HDL peroxide and aldehyde formation by up to 95%. This inhibitory effect was most pronounced when PON was added before oxidation initiation. When purified PON was added to whole serum, essentially all of it became HDL-associated. The PON-enriched HDL was more resistant to copper ion-induced oxidation than was control HDL. Compared with control HDL, HDL from PON-treated serum showed a 66% prolongation in the lag phase of its oxidation, and up to a 40% reduction in peroxide and aldehyde content. In contrast, in the presence of various PON inhibitors, HDL oxidation induced by either copper ions or by a free radical generating system was markedly enhanced. As PON inhibited HDL oxidation, two major functions of HDL were assessed: macrophage cholesterol efflux, and LDL protection from oxidation. Compared with oxidized untreated HDL, oxidized PON-treated HDL caused a 45% increase in cellular cholesterol efflux from J-774 A.1 macrophages. Both HDL-associated PON and purified PON were potent inhibitors of LDL oxidation. Searching for a possible mechanism for PON-induced inhibition of HDL oxidation revealed PON (2 paraoxonase U/ml)-mediated hydrolysis of lipid peroxides (by 19%) and of cholesteryl linoleate hydroperoxides (by 90%) in oxidized HDL. HDL-associated PON, as well as purified PON, were also able to substantially hydrolyze (up to 25%) hydrogen peroxide (H2O2), a major reactive oxygen species produced under oxidative stress during atherogenesis. Finally, we analyzed serum PON activity in the atherosclerotic apolipoprotein E-deficient mice during aging and development of atherosclerotic lesions. With age, serum lipid peroxidation and lesion size increased, whereas serum PON activity decreased. We thus conclude that HDL-associated PON possesses peroxidase-like activity that can contribute to the protective effect of PON against lipoprotein oxidation. The presence of PON in HDL may thus be a major contributor to the antiatherogenicity of this lipoprotein.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-density lipoprotein heterogeneity and function in reverse cholesterol transport.

              HDL is a cardioprotective lipoprotein, at least in part, because of its ability to mediate reverse cholesterol transport (RCT). It is becoming increasingly clear that the antiatherogenic effects of HDL are not only dependent on its concentration in circulating blood but also on its biological 'quality'. This review summarizes our current understanding of how the biological activities of individual subclasses of HDL particles contribute to overall HDL performance in RCT. Recent work indicates that apolipoprotein A-I-containing nascent HDL particles are heterogeneous and that such particles exert different effects on the RCT pathway. RCT from macrophages has been examined in detail in mice and the roles of plasma factors (lecithin-cholesterol acyltransferase, cholesterol ester transfer protein, phospholipid transfer protein) and cell factors (ATP-binding cassette transporter A1, ATP-binding cassette transporter G1, scavenger receptor class B type 1) have been evaluated. Manipulation of such factors has consistent effects on RCT and atherosclerosis, but the level of plasma HDL does not reliably predict the degree of RCT. Furthermore, HDL cholesterol or apolipoprotein A-I levels do not necessarily correlate with the magnitude of cholesterol efflux from macrophages; more understanding of the contributions of specific HDL subspecies is required. The antiatherogenic quality of HDL is defined by the functionality of HDL subspecies. In the case of RCT, the rate of cholesterol movement through the pathway is critical and the contributions of particular types of HDL particles to this process are becoming better defined.
                Bookmark

                Author and article information

                Journal
                Biochim Biophys Acta
                Biochim. Biophys. Acta
                Biochimica et Biophysica Acta
                Elsevier Pub. Co
                0006-3002
                1 September 2013
                September 2013
                : 1831
                : 9
                : 1442-1448
                Affiliations
                [a ]Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
                [b ]Department of Obstetrics and Gynecology, Medical University of Graz, Austria
                Author notes
                [* ]Corresponding author. Tel.: + 43 316 380 4513; fax: + 43 316 380 9645. gunther.marsche@ 123456medunigraz.at
                Article
                S1388-1981(13)00127-3
                10.1016/j.bbalip.2013.06.004
                3787738
                23792422
                85cfe3aa-d5eb-441f-b4fc-5b5913cbe6b4
                © 2013 The Authors

                This document may be redistributed and reused, subject to certain conditions.

                History
                : 15 April 2013
                : 7 June 2013
                : 13 June 2013
                Categories
                Article

                Biochemistry
                proteome,cardiovascular disease,paraoxonase,anti-oxidative activity
                Biochemistry
                proteome, cardiovascular disease, paraoxonase, anti-oxidative activity

                Comments

                Comment on this article