6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      miR-128 Regulates Tumor Cell CD47 Expression and Promotes Anti-tumor Immunity in Pancreatic Cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pancreatic adenocarcinoma (PDAC) is a highly fatal disease worldwide. MicroRNAs (miRNAs) could regulate the protein-coding RNAs related to tumor growth, invasion, and immune evasion. Therefore, the investigation of novel miRNAs may be helpful in the development of more effective therapies for PDAC. In this study, we investigated the role and mechanism of action of miR-128 in PDAC. By using bioinformatics methods, we found that decreased expression of miR-128 was associated with poor overall survival of PDAC. miR-128 was inversely correlated with cluster of differentiation 47 (CD47), which was positively related to zinc finger E-box-binding homeobox 1 (ZEB1) in PDAC. Through in vivo experiments, we found that miR-128 could suppress the growth and metastasis of PDAC. Analysis of the immune microenvironment demonstrated that overexpression of miR-128 on tumor cells could increase the percentages of dendritic cells (DCs), CD8 + T lymphocytes, and natural killer T cells (NKT) in the tumor and spleen, consequently enhancing anti-tumor immunity. In vitro assays showed that miR-128 could inhibit cell proliferation, clonogenicity, migration, and invasion in Panc02 cells and could also enhance the phagocytosis of macrophages and the activity of DCs. Western blot and qRT-PCR confirmed that miR-128 could regulate ZEB1 and further inhibit CD47 in pancreatic cancer cells. Therefore, we identified a novel regulatory anti-tumor mechanism by miR-128 in PDAC, which may serve as a novel therapy for PDAC.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer.

          Immune checkpoint inhibitors, including those targeting CTLA-4/B7 and the PD-1/PD-L1 inhibitory pathways, are now available for clinical use in cancer patients, with other interesting checkpoint inhibitors being currently in development. Most of these have the purpose to promote adaptive T cell-mediated immunity against cancer. Here, we review another checkpoint acting to potentiate the activity of innate immune cells towards cancer. This innate immune checkpoint is composed of what has become known as the 'don't-eat me' signal CD47, which is a protein broadly expressed on normal cells and often overexpressed on cancer cells, and its counter-receptor, the myeloid inhibitory immunoreceptor SIRPα. Blocking CD47-SIRPα interactions has been shown to promote the destruction of cancer cells by phagocytes, including macrophages and neutrophils. Furthermore, there is growing evidence that targeting of the CD47-SIRPα axis may also promote antigen-presenting cell function and thereby stimulate adaptive T cell-mediated anti-cancer immunity. The development of CD47-SIRPα checkpoint inhibitors and the potential side effects that these may have are discussed. Collectively, this identifies the CD47-SIRPα axis as a promising innate immune checkpoint in cancer, and with data of the first clinical studies with CD47-SIRPα checkpoint inhibitors expected within the coming years, this is an exciting and rapidly developing field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of the ZEB family of transcription factors in development and disease.

            The ZEB family of zinc finger transcription factors are essential players during normal embryonic development. One characteristic is that they induce epithelial to mesenchymal transition (EMT), a process that reorganizes epithelial cells to become migratory mesenchymal cells. E-cadherin is a major target gene of these transcriptional repressors, and this downregulation is considered a hallmark of EMT. In recent years, the involvement of the ZEB proteins in pathological contexts has been documented as well. Mutations in ZEB encoding genes cause severe syndromic malformations and evidence is mounting that links these factors to malignant tumor progression. In this review, we describe what is currently known on the molecular pathways these transcription factors are implicated in, and we highlight their roles in development and human diseases, with a focus on tumor malignancy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanism of CD1d-restricted natural killer T cell activation during microbial infection.

              CD1d-restricted natural killer T (NKT) cells are important for host defense against a variety of microbial pathogens. How and when these T cells become activated physiologically during infection remains unknown. Our data support a model in which NKT cells use a unique activation mechanism not requiring their recognition of microbial antigens. Instead, weak responses to CD1d-presented self antigens were amplified by interleukin 12 made by dendritic cells in response to microbial products, resulting in potent interferon-gamma secretion. NKT cells were among the first lymphocytes to respond during Salmonella typhimurium infection, and their activation in vivo also depended on interleukin 12 and CD1d recognition. We propose this mechanism of activation as a major pathway responsible for the rapid activation of NKT cells in different microbial infections.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                27 May 2020
                2020
                : 11
                : 890
                Affiliations
                [1] 1Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University , Tianjin, China
                [2] 2Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University , Guangzhou, China
                Author notes

                Edited by: Peter Brossart, University of Bonn, Germany

                Reviewed by: William K. Decker, Baylor College of Medicine, United States; Ying Ma, University of Texas MD Anderson Cancer Center, United States

                *Correspondence: Li-Juan Zhang lijuanzhang2010000@ 123456163.com

                This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Immunology

                †These authors have contributed equally to this work

                Article
                10.3389/fimmu.2020.00890
                7267029
                32536914
                864db9b3-0ede-45db-a5b0-cfa93e9f6892
                Copyright © 2020 Xi, Chen, Yang, Zhang, Zhang, Guo, Zhao, Xue, Li and Zhang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 10 December 2019
                : 17 April 2020
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 47, Pages: 13, Words: 7011
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Categories
                Immunology
                Original Research

                Immunology
                mir-128,pancreatic adenocarcinoma (pdac),zinc finger e-box-binding homeobox 1 (zeb1),cluster of differentiation 47 (cd47),tumor immunity

                Comments

                Comment on this article