2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Optimization and characterization of ultrasound assisted preparation of curcumin-loaded solid lipid nanoparticles: Application of central composite design, thermal analysis and X-ray diffraction techniques

      , , ,
      Ultrasonics Sonochemistry
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Bioavailability of curcumin: problems and promises.

          Curcumin, a polyphenolic compound derived from dietary spice turmeric, possesses diverse pharmacologic effects including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic activities. Phase I clinical trials have shown that curcumin is safe even at high doses (12 g/day) in humans but exhibit poor bioavailability. Major reasons contributing to the low plasma and tissue levels of curcumin appear to be due to poor absorption, rapid metabolism, and rapid systemic elimination. To improve the bioavailability of curcumin, numerous approaches have been undertaken. These approaches involve, first, the use of adjuvant like piperine that interferes with glucuronidation; second, the use of liposomal curcumin; third, curcumin nanoparticles; fourth, the use of curcumin phospholipid complex; and fifth, the use of structural analogues of curcumin (e.g., EF-24). The latter has been reported to have a rapid absorption with a peak plasma half-life. Despite the lower bioavailability, therapeutic efficacy of curcumin against various human diseases, including cancer, cardiovascular diseases, diabetes, arthritis, neurological diseases and Crohn's disease, has been documented. Enhanced bioavailability of curcumin in the near future is likely to bring this promising natural product to the forefront of therapeutic agents for treatment of human disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multiple biological activities of curcumin: a short review.

            Turmeric (Curcuma longa rhizomes), commonly used as a spice is well documented for its medicinal properties in Indian and Chinese systems of medicine. It has been widely used for the treatment of several diseases. Epidemiological observations, though inconclusive, are suggestive that turmeric consumption may reduce the risk of some form of cancers and render other protective biological effects in humans. These biological effects of turmeric have been attributed to its constituent curcumin that has been widely studied for its anti-inflammatory, anti-angiogenic, anti-oxidant, wound healing and anti-cancer effects. As a result of extensive epidemiological, clinical, and animal studies several molecular mechanisms are emerging that elucidate multiple biological effects of curcumin. This review summarizes the most interesting in vitro and in vivo studies on the biological effects of curcumin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Curcumin: the story so far.

              Curcumin is a polyphenol derived from the herbal remedy and dietary spice turmeric. It possesses diverse anti-inflammatory and anti-cancer properties following oral or topical administration. Apart from curcumin's potent antioxidant capacity at neutral and acidic pH, its mechanisms of action include inhibition of several cell signalling pathways at multiple levels, effects on cellular enzymes such as cyclooxygenase and glutathione S-transferases, immuno-modulation and effects on angiogenesis and cell-cell adhesion. Curcumin's ability to affect gene transcription and to induce apoptosis in preclinical models is likely to be of particular relevance to cancer chemoprevention and chemotherapy in patients. Although curcumin's low systemic bioavailability following oral dosing may limit access of sufficient concentrations for pharmacological effect in certain tissues, the attainment of biologically active levels in the gastrointestinal tract has been demonstrated in animals and humans. Sufficient data currently exist to advocate phase II clinical evaluation of oral curcumin in patients with invasive malignancy or pre-invasive lesions of the gastrointestinal tract, particularly the colon and rectum.
                Bookmark

                Author and article information

                Journal
                Ultrasonics Sonochemistry
                Ultrasonics Sonochemistry
                Elsevier BV
                13504177
                September 2017
                September 2017
                : 38
                : 271-280
                Article
                10.1016/j.ultsonch.2017.03.013
                28633826
                865814a9-af3f-4006-a2b8-e3d7c70d4cb9
                © 2017

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article