13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Activation of a plasmid-situated type III PKS gene cluster by deletion of a wbl gene in deepsea-derived Streptomyces somaliensis SCSIO ZH66

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Actinomycete genome sequencing has disclosed a large number of cryptic secondary metabolite biosynthetic gene clusters. However, their unavailable or limited expression severely hampered the discovery of bioactive compounds. The whiB-like ( wbl) regulatory genes play important roles in morphological differentiation as well as secondary metabolism; and hence the wblA so gene was probed and set as the target to activate cryptic gene clusters in deepsea-derived Streptomyces somaliensis SCSIO ZH66.

          Results

          wblA so from deepsea-derived S. somaliensis SCSIO ZH66 was inactivated, leading to significant changes of secondary metabolites production in the ΔwblA so mutant, from which α-pyrone compound violapyrone B (VLP B) was isolated. Subsequently, the VLP biosynthetic gene cluster was identified and characterized, which consists of a type III polyketide synthase (PKS) gene vioA and a regulatory gene vioB; delightedly, inactivation of vioB led to isolation of another four VLPs analogues, among which one was new and two exhibited improved anti-MRSA (methicillin-resistant Staphylococcus aureus, MRSA) activity than VLP B. Moreover, transcriptional analysis revealed that the expression levels of whi genes ( whiD, whiG, whiH and whiI) and wbl genes ( wblC, wblE, wblH, wblI and wblK) were repressed by different degrees, suggesting an intertwined regulation mechanism of wblA so in morphological differentiation and secondary metabolism of S. somaliensis SCSIO ZH66.

          Conclusions

          wblA orthologues would be effective targets for activation of cryptic gene clusters in marine-derived Streptomyces strains, notwithstanding the regulation mechanisms might be varied in different strains. Moreover, the availability of the vio gene cluster has enriched the diversity of type III PKSs, providing new opportunities to expand the chemical space of polyketides through biosynthetic engineering.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12934-016-0515-6) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Discovery of microbial natural products by activation of silent biosynthetic gene clusters.

          Microorganisms produce a wealth of structurally diverse specialized metabolites with a remarkable range of biological activities and a wide variety of applications in medicine and agriculture, such as the treatment of infectious diseases and cancer, and the prevention of crop damage. Genomics has revealed that many microorganisms have far greater potential to produce specialized metabolites than was thought from classic bioactivity screens; however, realizing this potential has been hampered by the fact that many specialized metabolite biosynthetic gene clusters (BGCs) are not expressed in laboratory cultures. In this Review, we discuss the strategies that have been developed in bacteria and fungi to identify and induce the expression of such silent BGCs, and we briefly summarize methods for the isolation and structural characterization of their metabolic products.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular regulation of antibiotic biosynthesis in streptomyces.

            Streptomycetes are the most abundant source of antibiotics. Typically, each species produces several antibiotics, with the profile being species specific. Streptomyces coelicolor, the model species, produces at least five different antibiotics. We review the regulation of antibiotic biosynthesis in S. coelicolor and other, nonmodel streptomycetes in the light of recent studies. The biosynthesis of each antibiotic is specified by a large gene cluster, usually including regulatory genes (cluster-situated regulators [CSRs]). These are the main point of connection with a plethora of generally conserved regulatory systems that monitor the organism's physiology, developmental state, population density, and environment to determine the onset and level of production of each antibiotic. Some CSRs may also be sensitive to the levels of different kinds of ligands, including products of the pathway itself, products of other antibiotic pathways in the same organism, and specialized regulatory small molecules such as gamma-butyrolactones. These interactions can result in self-reinforcing feed-forward circuitry and complex cross talk between pathways. The physiological signals and regulatory mechanisms may be of practical importance for the activation of the many cryptic secondary metabolic gene cluster pathways revealed by recent sequencing of numerous Streptomyces genomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Development of a fed-batch process for a recombinant Pichia pastoris Δoch1 strain expressing a plant peroxidase

              Pichia pastoris is a prominent host for recombinant protein production, amongst other things due to its capability of glycosylation. However, N-linked glycans on recombinant proteins get hypermannosylated, causing problems in subsequent unit operations and medical applications. Hypermannosylation is triggered by an α-1,6-mannosyltransferase called OCH1. In a recent study, we knocked out OCH1 in a recombinant P. pastoris CBS7435 MutS strain (Δoch1) expressing the biopharmaceutically relevant enzyme horseradish peroxidase. We characterized the strain in the controlled environment of a bioreactor in dynamic batch cultivations and identified the strain to be physiologically impaired. We faced cell cluster formation, cell lysis and uncontrollable foam formation. In the present study, we investigated the effects of the 3 process parameters temperature, pH and dissolved oxygen concentration on 1) cell physiology, 2) cell morphology, 3) cell lysis, 4) productivity and 5) product purity of the recombinant Δoch1 strain in a multivariate manner. Cultivation at 30°C resulted in low specific methanol uptake during adaptation and the risk of methanol accumulation during cultivation. Cell cluster formation was a function of the C-source rather than process parameters and went along with cell lysis. In terms of productivity and product purity a temperature of 20°C was highly beneficial. In summary, we determined cultivation conditions for a recombinant P. pastoris Δoch1 strain allowing high productivity and product purity. Electronic supplementary material The online version of this article (doi:10.1186/s12934-014-0183-3) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                hmhuang1988@163.com
                727052874@qq.com
                lihuayue@ouc.edu.cn
                qq2yanhong@163.com
                jju@scsio.ac.cn
                liwenli@ouc.edu.cn
                Journal
                Microb Cell Fact
                Microb. Cell Fact
                Microbial Cell Factories
                BioMed Central (London )
                1475-2859
                27 June 2016
                27 June 2016
                2016
                : 15
                : 116
                Affiliations
                [ ]Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
                [ ]CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301 China
                Article
                515
                10.1186/s12934-016-0515-6
                4924298
                27350607
                865990a6-979f-4f3c-a989-e9276ed00219
                © The Author(s) 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 1 March 2016
                : 17 June 2016
                Funding
                Funded by: the National High Technology Research and Development Program of China
                Award ID: 2012AA092104
                Award Recipient :
                Funded by: the National Natural Science Foundation of China
                Award ID: 31570032
                Award ID: 31171201
                Award Recipient :
                Funded by: the NSFC-Shandong Joint Fund for Marine Science Research Centers
                Award ID: U1406402
                Categories
                Research
                Custom metadata
                © The Author(s) 2016

                Biotechnology
                deepsea-derived streptomyces,cryptic gene cluster,whib-like (wbl) gene,violapyrones (vlps),type iii polyketide synthase (pks)

                Comments

                Comment on this article