11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Is monocyte- and macrophage-derived tissue transglutaminase involved in inflammatory processes?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Monocytes and macrophages are key players in inflammatory processes following an infection or tissue damage. Monocytes adhere and extravasate into the inflamed tissue, differentiate into macrophages, and produce inflammatory mediators to combat the pathogens. In addition, they take up dead cells and debris and, therefore, take part in the resolution of inflammation. The multifunctional enzyme tissue Transglutaminase (TG2, tTG) is known to participate in most of those monocyte- and macrophage-mediated processes. Moreover, TG2 expression and activity can be regulated by inflammatory mediators. In the present review, we selectively elaborate on the expression, regulation, and contribution of TG2 derived from monocytes and macrophages to inflammatory processes mediated by those cells. In addition, we discuss the role of TG2 in certain pathological conditions, in which inflammation and monocytes and/or macrophages are prominently present, including atherosclerosis, sepsis, and multiple sclerosis. Based on the studies and considerations reported in this review, we conclude that monocyte- and macrophage-derived TG2 is clearly involved in various processes contributing to inflammation. However, TG2’s potential as a therapeutic target to counteract the possible detrimental effects or stimulate the potential beneficial effects on monocyte and macrophage responses during inflammation should be carefully considered. Alternatively, as TG2-related parameters can be used as a marker of disease, e.g., in celiac disease, or of disease-stage, e.g., in cancer, we put forward that this could be subject of research for monocyte- or macrophage-derived TG2 in inflammatory diseases.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          Multiple Sclerosis

          New England Journal of Medicine, 343(13), 938-952
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transglutaminases: crosslinking enzymes with pleiotropic functions.

            Blood coagulation, skin-barrier formation, hardening of the fertilization envelope, extracellular-matrix assembly and other important biological processes are dependent on the rapid generation of covalent crosslinks between proteins. These reactions--which are catalysed by transglutaminases--endow the resulting supramolecular structure with extra rigidity and resistance against proteolytic degradation. Some transglutaminases function as molecular switches in cytoskeletal scaffolding and modulate protein-protein interactions. Having knowledge of these enzymes is essential for understanding the aetiologies of diverse hereditary diseases of the blood and skin, and various autoimmune, inflammatory and degenerative conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NF-kappa B activation as a pathological mechanism of septic shock and inflammation.

              The pathophysiology of sepsis and septic shock involves complex cytokine and inflammatory mediator networks. NF-kappaB activation is a central event leading to the activation of these networks. The role of NF-kappaB in septic pathophysiology and the signal transduction pathways leading to NF-kappaB activation during sepsis have been an area of intensive investigation. NF-kappaB is activated by a variety of pathogens known to cause septic shock syndrome. NF-kappaB activity is markedly increased in every organ studied, both in animal models of septic shock and in human subjects with sepsis. Greater levels of NF-kappaB activity are associated with a higher rate of mortality and worse clinical outcome. NF-kappaB mediates the transcription of exceptional large number of genes, the products of which are known to play important roles in septic pathophysiology. Mice deficient in those NF-kappaB-dependent genes are resistant to the development of septic shock and to septic lethality. More importantly, blockade of NF-kappaB pathway corrects septic abnormalities. Inhibition of NF-kappaB activation restores systemic hypotension, ameliorates septic myocardial dysfunction and vascular derangement, inhibits multiple proinflammatory gene expression, diminishes intravascular coagulation, reduces tissue neutrophil influx, and prevents microvascular endothelial leakage. Inhibition of NF-kappaB activation prevents multiple organ injury and improves survival in rodent models of septic shock. Thus NF-kappaB activation plays a central role in the pathophysiology of septic shock.
                Bookmark

                Author and article information

                Contributors
                +31 6 25694902 , amw.vandam@vumc.nl
                Journal
                Amino Acids
                Amino Acids
                Amino Acids
                Springer Vienna (Vienna )
                0939-4451
                1438-2199
                22 September 2016
                22 September 2016
                2017
                : 49
                : 3
                : 441-452
                Affiliations
                ISNI 0000 0004 0435 165X, GRID grid.16872.3a, Amsterdam Neuroscience, Department of Anatomy and Neurosciences, , VU University Medical Center, ; De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
                Author notes

                Handling Editors: S. Beninati, M. Piacentini, C.M. Bergamini.

                Author information
                http://orcid.org/0000-0003-4191-3941
                Article
                2334
                10.1007/s00726-016-2334-9
                5332491
                27659795
                86b72394-c51e-470b-882a-5067f8e7f752
                © The Author(s) 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 20 June 2016
                : 15 September 2016
                Funding
                Funded by: Dutch Multiple Sclerosis Research Society
                Award ID: MS14-865
                Award Recipient :
                Funded by: EU Marie Curie ITN
                Award ID: 289964
                Award Recipient :
                Categories
                Invited Review
                Custom metadata
                © Springer-Verlag Wien 2017

                Genetics
                inflammation,adhesion,differentiation,efferocytosis,multiple sclerosis
                Genetics
                inflammation, adhesion, differentiation, efferocytosis, multiple sclerosis

                Comments

                Comment on this article