60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The genetic pleiotropy of musculoskeletal aging

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Musculoskeletal aging is detrimental to multiple bodily functions and starts early, probably in the fourth decade of an individual's life. Sarcopenia is a health problem that is expected to only increase as a greater portion of the population lives longer; prevalence of the related musculoskeletal diseases is similarly expected to increase. Unraveling the biological and biomechanical associations and molecular mechanisms underlying these diseases represents a formidable challenge. There are two major problems making disentangling the biological complexity of musculoskeletal aging difficult: (a) it is a systemic, rather than “compartmental,” problem, which should be approached accordingly, and (b) the aging per se is neither well defined nor reliably measurable. A unique challenge of studying any age-related condition is a need of distinguishing between the “norm” and “pathology,” which are interwoven throughout the aging organism. We argue that detecting genes with pleiotropic functions in musculoskeletal aging is needed to provide insights into the potential biological mechanisms underlying inter-individual differences insusceptibility to the musculoskeletal diseases. However, exploring pleiotropic relationships among the system's components is challenging both methodologically and conceptually. We aimed to focus on genetic aspects of the cross-talk between muscle and its “neighboring” tissues and organs (tendon, bone, and cartilage), and to explore the role of genetics to find the new molecular links between skeletal muscle and other parts of the “musculoskeleton.” Identification of significant genetic variants underlying the musculoskeletal system's aging is now possible more than ever due to the currently available advanced genomic technologies. In summary, a “holistic” genetic approach is needed to study the systems's normal functioning and the disease predisposition in order to improve musculoskeletal health.

          Related collections

          Most cited references204

          • Record: found
          • Abstract: found
          • Article: not found

          AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy.

          D Hardie (2007)
          The SNF1/AMP-activated protein kinase (AMPK) family maintains the balance between ATP production and consumption in all eukaryotic cells. The kinases are heterotrimers that comprise a catalytic subunit and regulatory subunits that sense cellular energy levels. When energy status is compromised, the system activates catabolic pathways and switches off protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. Surprisingly, recent results indicate that the AMPK system is also important in functions that go beyond the regulation of energy homeostasis, such as the maintenance of cell polarity in epithelial cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            TGF-β and BMP Signaling in Osteoblast Differentiation and Bone Formation

            Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in a vast majority of cellular processes and is fundamentally important throughout life. TGF-β/BMPs have widely recognized roles in bone formation during mammalian development and exhibit versatile regulatory functions in the body. Signaling transduction by TGF-β/BMPs is specifically through both canonical Smad-dependent pathways (TGF-β/BMP ligands, receptors and Smads) and non-canonical Smad-independent signaling pathway (e.g. p38 mitogen-activated protein kinase pathway, MAPK). Following TGF-β/BMP induction, both the Smad and p38 MAPK pathways converge at the Runx2 gene to control mesenchymal precursor cell differentiation. The coordinated activity of Runx2 and TGF-β/BMP-activated Smads is critical for formation of the skeleton. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of TGF-β/BMP signaling in bone and in the signaling networks underlying osteoblast differentiation and bone formation. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in bone from studies of genetic mouse models and human diseases caused by the disruption of TGF-β/BMP signaling. This review also highlights the different modes of cross-talk between TGF-β/BMP signaling and the signaling pathways of MAPK, Wnt, Hedgehog, Notch, and FGF in osteoblast differentiation and bone formation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis.

              Estrogen deficiency has been considered the seminal mechanism of osteoporosis in both women and men, but epidemiological evidence in humans and recent mechanistic studies in rodents indicate that aging and the associated increase in reactive oxygen species (ROS) are the proximal culprits. ROS greatly influence the generation and survival of osteoclasts, osteoblasts, and osteocytes. Moreover, oxidative defense by the FoxO transcription factors is indispensable for skeletal homeostasis at any age. Loss of estrogens or androgens decreases defense against oxidative stress in bone, and this accounts for the increased bone resorption associated with the acute loss of these hormones. ROS-activated FoxOs in early mesenchymal progenitors also divert ss-catenin away from Wnt signaling, leading to decreased osteoblastogenesis. This latter mechanism may be implicated in the pathogenesis of type 1 and 2 diabetes and ROS-mediated adverse effects of diabetes on bone formation. Attenuation of Wnt signaling by the activation of peroxisome proliferator-activated receptor gamma by ligands generated from lipid oxidation also contributes to the age-dependent decrease in bone formation, suggesting a mechanistic explanation for the link between atherosclerosis and osteoporosis. Additionally, increased glucocorticoid production and sensitivity with advancing age decrease skeletal hydration and thereby increase skeletal fragility by attenuating the volume of the bone vasculature and interstitial fluid. This emerging evidence provides a paradigm shift from the "estrogen-centric" account of the pathogenesis of involutional osteoporosis to one in which age-related mechanisms intrinsic to bone and oxidative stress are protagonists and age-related changes in other organs and tissues, such as ovaries, accentuate them.
                Bookmark

                Author and article information

                Journal
                Front Physiol
                Front Physiol
                Front. Physio.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                08 August 2012
                2012
                : 3
                : 303
                Affiliations
                simpleFaculty of Medicine in the Galilee, Bar-Ilan University Safed, Israel
                Author notes

                Edited by: Alexandrina F. Mendes, University of Coimbra, Portugal

                Reviewed by: Sue Bodine, University of California, USA; Stewart I. Head, University of New South Wales, Australia; Aaron P. Russell, Deakin University, Burwood, Australia

                *Correspondence: David Karasik, Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, POB 1589, Safed, Israel. e-mail: karasik@ 123456hsl.harvard.edu

                This article was submitted to Frontiers in Striated Muscle Physiology, a specialty of Frontiers in Physiology.

                Article
                10.3389/fphys.2012.00303
                3429074
                22934054
                87af93a1-b7ea-4783-9494-940346909a07
                Copyright © 2012 Karasik and Cohen-Zinder.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 02 May 2012
                : 11 July 2012
                Page count
                Figures: 2, Tables: 2, Equations: 0, References: 244, Pages: 24, Words: 23555
                Categories
                Physiology
                Review Article

                Anatomy & Physiology
                aging,genome-wide studies,pleiotropic genes,cartilage,bone,musculoskeleton,sarcopenia,tendon

                Comments

                Comment on this article