0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of colistin resistance and its bactericidal activity against uropathogenic gram negative bacteria from Hayatabad Medical Complex Peshawar

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives:

          Identification of colistin resistance and its bactericidal activity against gram-negative bacteria isolated from urinary tract infection (UTI) patients.

          Methods:

          This 6-month cross sectional study was conducted in Hayatabad Medical Complex Peshawar from January 2019-June2019.. A total of 2000 urine samples were collected and transported to the Health Research Institute, NIH, Research Centre, Khyber Medical College Peshawar. Samples were streaked on different media and incubated at 37C° for 24hrs. Gram negative bacteria were identified through gram staining and Analytical Profile Index (API) 10s. Gram negative bacteria were subjected under antibiotic sensitivity profile through Kirby-Bauer disc diffusion method. Colistin resistance was found through broth microdilution method. Minimum bactericidal activity was performed to find out the lowest concentration of colistin required to kill gram-negative bacteria.

          Results:

          A total of 241(12.05%) uropathogenic gram negative bacteria were isolated and identified from 2000 urine samples while excluding intrinsically resistant bacteria. After broth microdilution, colistin resistance was found in 48(19.9%) Escherichia coli, 4(1.6%) Klebsiella pneumoniae and 3(1.3%) Pseudomonas aeruginosa respectively. Colistin resistant Escherichia coli were resistant to 77% Cephalosporins , 81% to Fluoroquinolones and 70% to Penicillin combinations. Colistin resistant Klebsiella pneumoniae were 100% resistant to Cephalosporins, Penicillin combinations and Fluoroquinolones while 75% were resistant to Carbapenems and Monobactams. Pseudomonas aeruginosa isolates were sensitive to all used antibiotics.

          Conclusion:

          E.coli was the mainly responsible uropathogen causing UTIs. Colistin resistance was found in 22.8% gram negative uropathogens. Klebsiella pneumoniae isolates exhibited highest resistance to antibiotics.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study.

          Until now, polymyxin resistance has involved chromosomal mutations but has never been reported via horizontal gene transfer. During a routine surveillance project on antimicrobial resistance in commensal Escherichia coli from food animals in China, a major increase of colistin resistance was observed. When an E coli strain, SHP45, possessing colistin resistance that could be transferred to another strain, was isolated from a pig, we conducted further analysis of possible plasmid-mediated polymyxin resistance. Herein, we report the emergence of the first plasmid-mediated polymyxin resistance mechanism, MCR-1, in Enterobacteriaceae.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections.

            Increasing multidrug resistance in Gram-negative bacteria, in particular Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae, presents a critical problem. Limited therapeutic options have forced infectious disease clinicians and microbiologists to reappraise the clinical application of colistin, a polymyxin antibiotic discovered more than 50 years ago. We summarise recent progress in understanding the complex chemistry, pharmacokinetics, and pharmacodynamics of colistin, the interplay between these three aspects, and their effect on the clinical use of this important antibiotic. Recent clinical findings are reviewed, focusing on evaluation of efficacy, emerging resistance, potential toxicities, and combination therapy. In the battle against rapidly emerging bacterial resistance we can no longer rely entirely on the discovery of new antibiotics; we must also pursue rational approaches to the use of older antibiotics such as colistin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Polymyxins: Antibacterial Activity, Susceptibility Testing, and Resistance Mechanisms Encoded by Plasmids or Chromosomes.

              SUMMARYPolymyxins are well-established antibiotics that have recently regained significant interest as a consequence of the increasing incidence of infections due to multidrug-resistant Gram-negative bacteria. Colistin and polymyxin B are being seriously reconsidered as last-resort antibiotics in many areas where multidrug resistance is observed in clinical medicine. In parallel, the heavy use of polymyxins in veterinary medicine is currently being reconsidered due to increased reports of polymyxin-resistant bacteria. Susceptibility testing is challenging with polymyxins, and currently available techniques are presented here. Genotypic and phenotypic methods that provide relevant information for diagnostic laboratories are presented. This review also presents recent works in relation to recently identified mechanisms of polymyxin resistance, including chromosomally encoded resistance traits as well as the recently identified plasmid-encoded polymyxin resistance determinant MCR-1. Epidemiological features summarizing the current knowledge in that field are presented.
                Bookmark

                Author and article information

                Journal
                Pak J Med Sci
                Pak J Med Sci
                Pakistan Journal of Medical Sciences
                Professional Medical Publications (Pakistan )
                1682-024X
                1681-715X
                Mar-Apr 2022
                : 38
                : 4Part-II
                : 981-986
                Affiliations
                [1 ]Ambreen Arif Research Officer, Health Research Institute, NIH (Islamabad). Khyber Medical College Peshawar, Khyber Medical University, Peshawar, Pakistan
                [2 ]Dr. Ihsan Ullah, Associate Professor (Microbiology), Khyber Medical University, Peshawar, Pakistan.
                [3 ]Obaid Ullah, Senior Research Officer, Health Research Institute, NIH (Islamabad). Khyber Medical College Peshawar, Pakistan
                [4 ]Ronaq Zaman, Assistant Professor, Kabir Medical College, Peshawar, Pakistan
                Author notes
                Correspondence: Dr. Ihsan Ullah, Associate Professor (Microbiology), Institute of Basic Medical Sciences, Khyber medical University Peshawar, Pakistan. E-mail: drihsan.ibms@ 123456kmu.edu.pk
                Article
                PJMS-38-981
                10.12669/pjms.38.4.5221
                9121951
                35634614
                88984eff-3e8e-44ac-8223-c20189a4fc67
                Copyright: © Pakistan Journal of Medical Sciences

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 August 2021
                : 05 January 2022
                : 29 January 2022
                Categories
                Original Article

                antibiotics,colistin resistance,gram-negative bacteria,minimum inhibitory concentration,urinary tract infection

                Comments

                Comment on this article