3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Oligomerization of G-protein-coupled transmitter receptors

      Nature Reviews Neuroscience
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Examples of G-protein-coupled receptors that can be biochemically detected in homo- or heteromeric complexes are emerging at an accelerated rate. Biophysical approaches have confirmed the existence of several such complexes in living cells and there is strong evidence to support the idea that dimerization is important in different aspects of receptor biogenesis and function. While the existence of G-protein-coupled-receptor homodimers raises fundamental questions about the molecular mechanisms involved in transmitter recognition and signal transduction, the formation of heterodimers raises fascinating combinatorial possibilities that could underlie an unexpected level of pharmacological diversity, and contribute to cross-talk regulation between transmission systems. Because G-protein-coupled receptors are major pharmacological targets, the existence of dimers could have important implications for the development and screening of new drugs. Here, we review the evidence supporting the existence of G-protein-coupled-receptor dimerization and discuss its functional importance.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular tinkering of G protein-coupled receptors: an evolutionary success.

          Among membrane-bound receptors, the G protein-coupled receptors (GPCRs) are certainly the most diverse. They have been very successful during evolution, being capable of transducing messages as different as photons, organic odorants, nucleotides, nucleosides, peptides, lipids and proteins. Indirect studies, as well as two-dimensional crystallization of rhodopsin, have led to a useful model of a common 'central core', composed of seven transmembrane helical domains, and its structural modifications during activation. There are at least six families of GPCRs showing no sequence similarity. They use an amazing number of different domains both to bind their ligands and to activate G proteins. The fine-tuning of their coupling to G proteins is regulated by splicing, RNA editing and phosphorylation. Some GPCRs have been found to form either homo- or heterodimers with a structurally different GPCR, but also with membrane-bound proteins having one transmembrane domain such as nina-A, odr-4 or RAMP, the latter being involved in their targeting, function and pharmacology. Finally, some GPCRs are unfaithful to G proteins and interact directly, via their C-terminal domain, with proteins containing PDZ and Enabled/VASP homology (EVH)-like domains.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor.

            The metabotropic glutamate receptors (mGluRs) are key receptors in the modulation of excitatory synaptic transmission in the central nervous system. Here we have determined three different crystal structures of the extracellular ligand-binding region of mGluR1--in a complex with glutamate and in two unliganded forms. They all showed disulphide-linked homodimers, whose 'active' and 'resting' conformations are modulated through the dimeric interface by a packed alpha-helical structure. The bi-lobed protomer architectures flexibly change their domain arrangements to form an 'open' or 'closed' conformation. The structures imply that glutamate binding stabilizes both the 'active' dimer and the 'closed' protomer in dynamic equilibrium. Movements of the four domains in the dimer are likely to affect the separation of the transmembrane and intracellular regions, and thereby activate the receptor. This scheme in the initial receptor activation could be applied generally to G-protein-coupled neurotransmitter receptors that possess extracellular ligand-binding sites.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Dimerization of cell surface receptors in signal transduction.

              C-H Heldin (1995)
                Bookmark

                Author and article information

                Journal
                Nature Reviews Neuroscience
                Nat Rev Neurosci
                Springer Science and Business Media LLC
                1471-003X
                1471-0048
                April 2001
                April 2001
                : 2
                : 4
                : 274-286
                Article
                10.1038/35067575
                11283750
                889f109a-596e-4239-8a32-15f733bc82a6
                © 2001

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article