1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of a Shared Microbiomic and Metabolomic Profile in Systemic Autoimmune Diseases

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dysbiosis has been described in systemic autoimmune diseases (SADs), including systemic lupus erythematosus (SLE), Sjögren’s syndrome (SjS), and primary anti-phosholipid syndrome (PAPS), however the biological implications of these associations are often elusive. Stool and plasma samples from 114 subjects, including in SLE ( n = 27), SjS ( n = 23), PAPs ( n = 11) and undifferentiated connective tissue (UCTD, n = 26) patients, and geographically-matched healthy controls (HCs, n = 27), were collected for microbiome (16s rRNA gene sequencing) and metabolome (high-performance liquid chromatography coupled to mass spectrometry) analysis to identify shared characteristics across diseases. Out of 130 identified microbial genera, a subset of 29 bacteria was able to differentiate study groups (area under receiver operating characteristics (AUROC) = 0.730 ± 0.025). A fair classification was obtained with a subset of 41 metabolic peaks out of 254 (AUROC = 0.748 ± 0.021). In both models, HCs were well separated from SADs, while UCTD largely overlapped with the other diseases. In all of the SADs pro-tolerogenic bacteria were reduced, while pathobiont genera were increased. Metabolic alterations included two clusters comprised of: (a) members of the acylcarnitine family, positively correlating with a Prevotella-enriched cluster and negatively correlating with a butyrate-producing bacteria-enriched cluster; and (b) phospholipids, negatively correlating with butyrate-producing bacteria. These findings demonstrate a strong interaction between intestinal microbiota and metabolic function in patients with SADs.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis

          Background The adaptive immune response in rheumatoid arthritis (RA) is influenced by an interaction between host genetics and environment, particularly the host microbiome. Association of the gut microbiota with various diseases has been reported, though the specific components of the microbiota that affect the host response leading to disease remain unknown. However, there is limited information on the role of gut microbiota in RA. In this study we aimed to define a microbial and metabolite profile that could predict disease status. In addition, we aimed to generate a humanized model of arthritis to confirm the RA-associated microbe. Methods To identify an RA biomarker profile, the 16S ribosomal DNA of fecal samples from RA patients, first-degree relatives (to rule out environment/background as confounding factors), and random healthy non-RA controls were sequenced. Analysis of metabolites and their association with specific taxa was performed to investigate a potential mechanistic link. The role of an RA-associated microbe was confirmed using a human epithelial cell line and a humanized mouse model of arthritis. Results Patients with RA exhibited decreased gut microbial diversity compared with controls, which correlated with disease duration and autoantibody levels. A taxon-level analysis suggested an expansion of rare taxa, Actinobacteria, with a decrease in abundant taxa in patients with RA compared with controls. Prediction models based on the random forests algorithm suggested that three genera, Collinsella, Eggerthella, and Faecalibacterium, segregated with RA. The abundance of Collinsella correlated strongly with high levels of alpha-aminoadipic acid and asparagine as well as production of the proinflammatory cytokine IL-17A. A role for Collinsella in altering gut permeability and disease severity was confirmed in experimental arthritis. Conclusions These observations suggest dysbiosis in RA patients resulting from the abundance of certain rare bacterial lineages. A correlation between the intestinal microbiota and metabolic signatures could determine a predictive profile for disease causation and progression. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0299-7) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sequencing and beyond: integrating molecular 'omics' for microbial community profiling.

            High-throughput DNA sequencing has proven invaluable for investigating diverse environmental and host-associated microbial communities. In this Review, we discuss emerging strategies for microbial community analysis that complement and expand traditional metagenomic profiling. These include novel DNA sequencing strategies for identifying strain-level microbial variation and community temporal dynamics; measuring multiple 'omic' data types that better capture community functional activity, such as transcriptomics, proteomics and metabolomics; and combining multiple forms of omic data in an integrated framework. We highlight studies in which the 'multi-omics' approach has led to improved mechanistic models of microbial community structure and function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Altered Mucosal Microbiome Diversity and Disease Severity in Sjögren Syndrome

              There is mounting evidence that the microbiome has potent immunoregulatory functions. We assessed the effects of intestinal dysbiosis in a model of Sjögren syndrome (SS) by subjecting mice to desiccating stress (DS) and antibiotics (ABX). We characterized the conjunctival, tongue and fecal microbiome profiles of patients with SS. Severity of ocular surface and systemic disease was graded. 16S ribosomal RNA gene sequencing characterized the microbiota. ABX + DS mice had a significantly worse dry eye phenotype compared to controls, a decrease in Clostridium and an increase in Enterobacter, Escherichia/Shigella, and Pseudomonas in stool after ABX + DS for 10 days. Goblet cell density was significantly lower in ABX treated groups compared to controls. Stool from SS subjects had greater relative abundances of Pseudobutyrivibrio, Escherichia/Shigella, Blautia, and Streptococcus, while relative abundance of Bacteroides, Parabacteroides, Faecalibacterium, and Prevotella was reduced compared to controls. The severity of SS ocular and systemic disease was inversely correlated with microbial diversity. These findings suggest that SS is marked by a dysbiotic intestinal microbiome driven by low relative abundance of commensal bacteria and high relative abundance of potentially pathogenic genera that is associated with worse ocular mucosal disease in a mouse model of SS and in SS patients.
                Bookmark

                Author and article information

                Journal
                J Clin Med
                J Clin Med
                jcm
                Journal of Clinical Medicine
                MDPI
                2077-0383
                23 August 2019
                September 2019
                : 8
                : 9
                : 1291
                Affiliations
                [1 ]Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico di Milano, 20122 Milan, Italy
                [2 ]Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
                [3 ]Department of Analytical Chemistry, University of Granada, 18016 Granada, Spain
                [4 ]Research and Development of Functional Food Centre (CIDAF), Health Science Technological Park, 18016 Granada, Spain
                [5 ]Centre for Genomics and Oncological Research (GENYO), Pfizer-University of Granada-Andalusian Regional Government, 18016 Granada, Spain
                [6 ]Institute for Environmental Medicine, Karolinska Institutet, 40225 Stockholm, Sweden
                Author notes
                [* ]Correspondence: lorenzo.beretta@ 123456policlinico.mi.it ; Tel.: +39-0255035272
                [†]

                Both authors equally contributed to the paper.

                Author information
                https://orcid.org/0000-0001-5547-3209
                https://orcid.org/0000-0001-6465-7624
                https://orcid.org/0000-0002-7632-4154
                Article
                jcm-08-01291
                10.3390/jcm8091291
                6780636
                31450824
                88d854a7-07d8-4d2a-84ce-4c2d68b17581
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 15 July 2019
                : 21 August 2019
                Categories
                Article

                microbiomic,metabolomics,systemic autoimmune diseases,systemic lupus erythematosus,sjögren’s syndrome,primary anti-phosholipid syndrome,undifferentiated connective tissue diseases

                Comments

                Comment on this article