42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rhythm in disguise: why singing may not hold the key to recovery from aphasia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The question of whether singing may be helpful for stroke patients with non-fluent aphasia has been debated for many years. However, the role of rhythm in speech recovery appears to have been neglected. In the current lesion study, we aimed to assess the relative importance of melody and rhythm for speech production in 17 non-fluent aphasics. Furthermore, we systematically alternated the lyrics to test for the influence of long-term memory and preserved motor automaticity in formulaic expressions. We controlled for vocal frequency variability, pitch accuracy, rhythmicity, syllable duration, phonetic complexity and other relevant factors, such as learning effects or the acoustic setting. Contrary to some opinion, our data suggest that singing may not be decisive for speech production in non-fluent aphasics. Instead, our results indicate that rhythm may be crucial, particularly for patients with lesions including the basal ganglia. Among the patients we studied, basal ganglia lesions accounted for more than 50% of the variance related to rhythmicity. Our findings therefore suggest that benefits typically attributed to melodic intoning in the past could actually have their roots in rhythm. Moreover, our data indicate that lyric production in non-fluent aphasics may be strongly mediated by long-term memory and motor automaticity, irrespective of whether lyrics are sung or spoken.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Shared and distinct neural correlates of singing and speaking.

          Using a modified sparse temporal sampling fMRI technique, we examined both shared and distinct neural correlates of singing and speaking. In the experimental conditions, 10 right-handed subjects were asked to repeat intoned ("sung") and non-intoned ("spoken") bisyllabic words/phrases that were contrasted with conditions controlling for pitch ("humming") and the basic motor processes associated with vocalization ("vowel production"). Areas of activation common to all tasks included the inferior pre- and post-central gyrus, superior temporal gyrus (STG), and superior temporal sulcus (STS) bilaterally, indicating a large shared network for motor preparation and execution as well as sensory feedback/control for vocal production. The speaking more than vowel-production contrast revealed activation in the inferior frontal gyrus most likely related to motor planning and preparation, in the primary sensorimotor cortex related to motor execution, and the middle and posterior STG/STS related to sensory feedback. The singing more than speaking contrast revealed additional activation in the mid-portions of the STG (more strongly on the right than left) and the most inferior and middle portions of the primary sensorimotor cortex. Our results suggest a bihemispheric network for vocal production regardless of whether the words/phrases were intoned or spoken. Furthermore, singing more than humming ("intoned speaking") showed additional right-lateralized activation of the superior temporal gyrus, inferior central operculum, and inferior frontal gyrus which may offer an explanation for the clinical observation that patients with non-fluent aphasia due to left hemisphere lesions are able to sing the text of a song while they are unable to speak the same words.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Non-motor basal ganglia functions: a review and proposal for a model of sensory predictability in auditory language perception.

            While the primary function of the basal ganglia (BG) is linked to motor behaviour, several investigations of non-motor behaviour allocate cognitive and language-specific functions to the BG. What may such seemingly discrepant functions have in common? Some neurophysiologic theories of motor behaviour assign temporal sequencing, others the sequencing of general cognitive patterns to the BG. Turning to auditory language perception and syntax in particular, one may consider syntactic processing as a hierarchical sequencing phenomenon. Furthermore, previous data have shown that if events are predictable, the processing of successively following events in a sequence is facilitated. We propose that sequencing is closely linked to the perception of predictable cues (regular beats, meter, temporal chunks etc.). If this is the case, syntactic processing should rely on the extraction of predictable cues in auditory language perception. Consequently, dysfunctional extraction of such cues in BG patients should then lead to secondary deficits in syntactic processing as evidenced in recent behavioural and electrophysiological evidence (ERP). The fact that such "secondary syntactic deficits" can be compensated by external and speech inherent predictable cues permits two conclusions: (i) syntactic deficits in BG patients are epiphenomenal, and (ii) sequencing dysfunctions of the pre-supplementary motor area (SMA)-BG circuit may be compensated by increased influence of the cerebellar-thalamic-pre-SMA pathway. In the current review we elaborate on this possibility drawing comparisons to similar proposals in motor and language production.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neural correlates of recovery from aphasia after damage to left inferior frontal cortex.

              To determine neural correlates of recovery from aphasia after left frontal injury. The authors studied the verbal performance of patients with infarcts centered in the left inferior frontal gyrus (IFG), using a battery of attention-demanding lexical tasks that normally activate the left IFG and a simpler reading task that does not normally recruit the left IFG. The authors used positron emission tomography (PET) and functional MRI (fMRI) to record neural activity in the same group of patients during word-stem completion, one of the attention-demanding lexical tasks. To identify potential neural correlates of compensation/recovery, they analyzed the resulting data for the group as a whole (PET, fMRI) and also for each participant (fMRI). Patients with damage to the left IFG were impaired on all attention-demanding lexical tasks, but they completed the word-reading tasks normally. The imaging studies demonstrated a stronger-than-normal response in the right IFG, a region homologous to the damaged left IFG. The level of activation in the right IFG did not correlate with verbal performance, however. In addition, a perilesional response within the damaged left IFG was localized in the two patients who gave the best performance in the word-stem completion task and showed the most complete recovery from aphasia. Right-IFG activity may represent either the recruitment of a preexisting neural pathway through alternative behavioral strategies or an anomalous response caused by removal of the left IFG. Perilesional activity in the left IFG may represent sparing or restoration of normal function in peri-infarctual tissue that was inactive early on after injury. This activity may be of greater functional significance than right IFG activity because it was associated with more normal verbal performance.
                Bookmark

                Author and article information

                Journal
                Brain
                brainj
                brain
                Brain
                Oxford University Press
                0006-8950
                1460-2156
                October 2011
                22 September 2011
                22 September 2011
                : 134
                : 10
                : 3083-3093
                Affiliations
                Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
                Author notes
                Correspondence to: Benjamin Stahl, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103 Leipzig, Germany E-mail: stahl@ 123456cbs.mpg.de
                Article
                awr240
                10.1093/brain/awr240
                3187543
                21948939
                89287820-3882-49aa-8a31-ce82651d0e21
                © The Author (2011). Published by Oxford University Press on behalf of the Guarantors of Brain.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 June 2011
                : 11 August 2011
                : 15 August 2011
                Page count
                Pages: 11
                Categories
                Original Articles

                Neurosciences
                automaticity of formulaic expressions,melodic intonation therapy,non-fluent aphasia,basal ganglia,long-term memory

                Comments

                Comment on this article