1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The PTGS2/COX2-PGE 2 signaling cascade in inflammation: Pro or anti? A case study with type 1 diabetes mellitus

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prostaglandins are lipid mediators involved in physiological processes, such as constriction or dilation of blood vessels, but also pathophysiological processes, which include inflammation, pain and fever. They are produced by almost all cell types in the organism by activation of Prostaglandin endoperoxide synthases/Cyclooxygenases. The inducible Prostaglandin Endoperoxide Synthase 2/Cyclooxygenase 2 (PTGS2/COX2) plays an important role in pathologies associated with inflammatory signaling. The main product derived from PTGS2/COX2 expression and activation is Prostaglandin E 2 (PGE 2), which promotes a wide variety of tissue-specific effects, pending environmental inputs. One of the major sources of PGE 2 are infiltrating inflammatory cells - the production of this molecule increases drastically in damaged tissues. Immune infiltration is a hallmark of type 1 diabetes mellitus, a multifactorial disease that leads to autoimmune-mediated pancreatic beta cell destruction. Controversial effects for the PTGS2/COX2-PGE 2 signaling cascade in pancreatic islet cells subjected to diabetogenic conditions have been reported, allocating PGE 2 as both, cause and consequence of inflammation. Herein, we review the main effects of this molecular pathway in a tissue-specific manner, with a special emphasis on beta cell mass protection/destruction and its potential role in the prevention or development of T1DM. We also discuss strategies to target this pathway for future therapies.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta.

          NF-kappaB comprises a family of cellular transcription factors that are involved in the inducible expression of a variety of cellular genes that regulate the inflammatory response. NF-kappaB is sequestered in the cytoplasm by inhibitory proteins, I(kappa)B, which are phosphorylated by a cellular kinase complex known as IKK. IKK is made up of two kinases, IKK-alpha and IKK-beta, which phosphorylate I(kappa)B, leading to its degradation and translocation of NF-kappaB to the nucleus. IKK kinase activity is stimulated when cells are exposed to the cytokine TNF-alpha or by overexpression of the cellular kinases MEKK1 and NIK. Here we demonstrate that the anti-inflammatory agents aspirin and sodium salicylate specifically inhibit IKK-beta activity in vitro and in vivo. The mechanism of aspirin and sodium salicylate inhibition is due to binding of these agents to IKK-beta to reduce ATP binding. Our results indicate that the anti-inflammatory properties of aspirin and salicylate are mediated in part by their specific inhibition of IKK-beta, thereby preventing activation by NF-kappaB of genes involved in the pathogenesis of the inflammatory response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression.

            Two cyclooxygenase isozymes, COX-1 and -2, are known to catalyze the rate-limiting step of prostaglandin synthesis and are the targets of nonsteroidal antiinflammatory drugs. Here we describe a third distinct COX isozyme, COX-3, as well as two smaller COX-1-derived proteins (partial COX-1 or PCOX-1 proteins). COX-3 and one of the PCOX-1 proteins (PCOX-1a) are made from the COX-1 gene but retain intron 1 in their mRNAs. PCOX-1 proteins additionally contain an in-frame deletion of exons 5-8 of the COX-1 mRNA. COX-3 and PCOX mRNAs are expressed in canine cerebral cortex and in lesser amounts in other tissues analyzed. In human, COX-3 mRNA is expressed as an approximately 5.2-kb transcript and is most abundant in cerebral cortex and heart. Intron 1 is conserved in length and in sequence in mammalian COX-1 genes. This intron contains an ORF that introduces an insertion of 30-34 aa, depending on the mammalian species, into the hydrophobic signal peptide that directs COX-1 into the lumen of the endoplasmic reticulum and nuclear envelope. COX-3 and PCOX-1a are expressed efficiently in insect cells as membrane-bound proteins. The signal peptide is not cleaved from either protein and both proteins are glycosylated. COX-3, but not PCOX-1a, possesses glycosylation-dependent cyclooxygenase activity. Comparison of canine COX-3 activity with murine COX-1 and -2 demonstrates that this enzyme is selectively inhibited by analgesic/antipyretic drugs such as acetaminophen, phenacetin, antipyrine, and dipyrone, and is potently inhibited by some nonsteroidal antiinflammatory drugs. Thus, inhibition of COX-3 could represent a primary central mechanism by which these drugs decrease pain and possibly fever.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases.

              Cyclooxygenase (COX) catalyses the first committed step in the synthesis of prostanoids, a large family of arachidonic acid metabolites comprising prostaglandins, prostacyclin, and thromboxanes, and is a major target of non-steroidal anti-inflammatory drugs (NSAIDs). COX exists as constitutive and inducible isoforms. COX-2 is the inducible isoform, rapidly expressed in several cell types in response to growth factors, cytokines, and pro-inflammatory molecules. Since its discovery in the early 1990s, COX-2 has emerged as a major player in inflammatory reactions in peripheral tissues. By extension, COX-2 expression in brain has been associated with pro-inflammatory activities, thought to be instrumental in neurodegenerative processes of several acute and chronic diseases. However, 2 major aspects should be borne in mind. First, in the central nervous system, COX-2 is expressed under normal conditions and contributes to fundamental brain functions, such as synaptic activity, memory consolidation, and functional hyperemia. Second, "neuroinflammation" is a much more controlled reaction than inflammation in peripheral tissues, and in many cases is triggered and sustained by activation of resident cells, particularly microglia. In spite of the intense research of the last decade, the evidence of a direct role of COX-2 in neurodegenerative events is still controversial. This article will review new data in this area, focusing on some major human neurological diseases, such as multiple sclerosis, amyotrophic lateral sclerosis, Parkinson disease, Creutzfeldt-Jakob disease, and Alzheimer disease. Furthermore, the emerging role of COX-2 in behavioral and cognitive functions will be discussed.
                Bookmark

                Author and article information

                Journal
                Int J Biol Sci
                Int J Biol Sci
                ijbs
                International Journal of Biological Sciences
                Ivyspring International Publisher (Sydney )
                1449-2288
                2023
                6 August 2023
                : 19
                : 13
                : 4157-4165
                Affiliations
                [1 ]Andalusian Center of Molecular Biology and Regenerative Medicine CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain.
                [2 ]Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Madrid, Spain.
                Author notes
                ✉ Corresponding author: Benoit R. Gauthier (ORCID: 0000-0001-8146-7486) CABIMER: Andalusian Center of Molecular Biology and Regenerative Medicine Ave Americo Vespucio, 24 41092 Sevilla, Spain. Tel: +34 954 467 468; Fax: +34 954 461 664; Email: benoit.gauthier@ 123456cabimer.es

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                ijbsv19p4157
                10.7150/ijbs.86492
                10496497
                37705740
                892b2360-6a62-4fe2-9ee3-fd7f4444a933
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 24 May 2023
                : 24 July 2023
                Categories
                Review

                Life sciences
                beta cells,cyclooxygenases,inflammation,pancreatic islets,prostaglandin,type 1 diabetes mellitus

                Comments

                Comment on this article