Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The nickel enzyme methyl-coenzyme M reductase from methanogenic archaea: In vitro induction of the nickel-based MCR-ox EPR signals from MCR-red2.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Methyl-coenzyme M reductase (MCR) is a nickel enzyme catalyzing the formation of methane from methyl-coenzyme M and coenzyme B in all methanogenic archaea. The active purified enzyme exhibits the axial EPR signal MCR-red1 and in the presence of coenzyme M and coenzyme B the rhombic signal MCR-red2, both derived from Ni(I). Two other EPR-detectable states of the enzyme have been observed in vivo and in vitro designated MCR-ox1 and MCR-ox2 which have quite different nickel EPR signals and which are inactive. Until now the MCR-ox1 and MCR-ox2 states could only be induced in vivo. We report here that in vitro the MCR-red2 state is converted into the MCR-ox1 state by the addition of polysulfide and into a light-sensitive MCR-ox2 state by the addition of sulfite. In the presence of O(2) the MCR-red2 state was converted into a novel third state designated MCR-ox3 and exhibiting two EPR signals similar but not identical to MCR-ox1 and MCR-ox2. The formation of the MCR-ox states was dependent on the presence of coenzyme B. Investigations with the coenzyme B analogues S-methyl-coenzyme B and desulfa-methyl-coenzyme B indicate that for the induction of the MCR-ox states the thiol group of coenzyme B is probably not of importance. The results were obtained with purified active methyl-coenzyme M reductase isoenzyme I from Methanothermobacter marburgensis. They are discussed with respect to the nickel oxidation states in MCR-ox1, MCR-ox2 and MCR-ox3 and to a possible presence of a second redox active group in the active site. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00775-001-0325-z.

          Related collections

          Author and article information

          Journal
          J Biol Inorg Chem
          Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry
          Springer Science and Business Media LLC
          0949-8257
          0949-8257
          Apr 2002
          : 7
          : 4-5
          Affiliations
          [1 ] Max-Planck-Institut für terrestrische Mikrobiologie and Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Karl-von-Frisch-Strasse, 35043 Marburg, Germany.
          Article
          10.1007/s00775-001-0325-z
          11941508
          8a154077-ee48-4134-b82d-b6e636667879
          History

          Comments

          Comment on this article