62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Meta-Analysis of Gene Expression Signatures Defining the Epithelial to Mesenchymal Transition during Cancer Progression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The epithelial to mesenchymal transition (EMT) represents a crucial event during cancer progression and dissemination. EMT is the conversion of carcinoma cells from an epithelial to a mesenchymal phenotype that associates with a higher cell motility as well as enhanced chemoresistance and cancer stemness. Notably, EMT has been increasingly recognized as an early event of metastasis. Numerous gene expression studies (GES) have been conducted to obtain transcriptome signatures and marker genes to understand the regulatory mechanisms underlying EMT. Yet, no meta-analysis considering the multitude of GES of EMT has been performed to comprehensively elaborate the core genes in this process. Here we report the meta-analysis of 18 independent and published GES of EMT which focused on different cell types and treatment modalities. Computational analysis revealed clustering of GES according to the type of treatment rather than to cell type. GES of EMT induced via transforming growth factor-β and tumor necrosis factor-α treatment yielded uniformly defined clusters while GES of models with alternative EMT induction clustered in a more complex fashion. In addition, we identified those up- and downregulated genes which were shared between the multitude of GES. This core gene list includes well known EMT markers as well as novel genes so far not described in this process. Furthermore, several genes of the EMT-core gene list significantly correlated with impaired pathological complete response in breast cancer patients. In conclusion, this meta-analysis provides a comprehensive survey of available EMT expression signatures and shows fundamental insights into the mechanisms that are governing carcinoma progression.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Epithelial-mesenchymal transitions in development and disease.

          The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and in the differentiation of multiple tissues and organs. EMT also contributes to tissue repair, but it can adversely cause organ fibrosis and promote carcinoma progression through a variety of mechanisms. EMT endows cells with migratory and invasive properties, induces stem cell properties, prevents apoptosis and senescence, and contributes to immunosuppression. Thus, the mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Initial steps of metastasis: Cell invasion and endothelial transmigration

            Metastasis is the leading cause of cancer mortality. The metastatic cascade represents a multi-step process which includes local tumor cell invasion, entry into the vasculature followed by the exit of carcinoma cells from the circulation and colonization at the distal sites. At the earliest stage of successful cancer cell dissemination, the primary cancer adapts the secondary site of tumor colonization involving the tumor–stroma crosstalk. The migration and plasticity of cancer cells as well as the surrounding environment such as stromal and endothelial cells are mandatory. Consequently, the mechanisms of cell movement are of utmost relevance for targeted intervention of which three different types have been reported. Tumor cells can migrate either collectively, in a mesenchymal or in an amoeboid type of movement and intravasate the blood or lymph vasculature. Intravasation by the interaction of tumor cells with the vascular endothelium is mechanistically poorly understood. Changes in the epithelial plasticity enable carcinoma cells to switch between these types of motility. The types of migration may change depending on the intervention thereby increasing the velocity and aggressiveness of invading cancer cells. Interference with collective or mesenchymal cell invasion by targeting integrin expression or metalloproteinase activity, respectively, resulted in an amoeboid cell phenotype as the ultimate exit strategy of cancer cells. There are little mechanistic details reported in vivo showing that the amoeboid behavior can be either reversed or efficiently inhibited. Future concepts of metastasis intervention must simultaneously address the collective, mesenchymal and amoeboid mechanisms of cell invasion in order to advance in anti-metastatic strategies as these different types of movement can coexist and cooperate. Beyond the targeting of cell movements, the adhesion of cancer cells to the stroma in heterotypic circulating tumor cell emboli is of paramount relevance for anti-metastatic therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer.

              We developed a multigene predictor of pathologic complete response (pCR) to preoperative weekly paclitaxel and fluorouracil-doxorubicin-cyclophosphamide (T/FAC) chemotherapy and assessed its predictive accuracy on independent cases. One hundred thirty-three patients with stage I-III breast cancer were included. Pretreatment gene expression profiling was performed with oligonecleotide microarrays on fine-needle aspiration specimens. We developed predictors of pCR from 82 cases and assessed accuracy on 51 independent cases. Overall pCR rate was 26% in both cohorts. In the training set, 56 probes were identified as differentially expressed between pCR versus residual disease, at a false discovery rate of 1%. We examined the performance of 780 distinct classifiers (set of genes + prediction algorithm) in full cross-validation. Many predictors performed equally well. A nominally best 30-probe set Diagonal Linear Discriminant Analysis classifier was selected for independent validation. It showed significantly higher sensitivity (92% v 61%) than a clinical predictor including age, grade, and estrogen receptor status. The negative predictive value (96% v 86%) and area under the curve (0.877 v 0.811) were nominally better but not statistically significant. The combination of genomic and clinical information yielded a predictor not significantly different from the genomic predictor alone. In 31 samples, RNA was hybridized in replicate with resulting predictions that were 97% concordant. A 30-probe set pharmacogenomic predictor predicted pCR to T/FAC chemotherapy with high sensitivity and negative predictive value. This test correctly identified all but one of the patients who achieved pCR (12 of 13 patients) and all but one of those who were predicted to have residual disease had residual cancer (27 of 28 patients).
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                10 December 2012
                : 7
                : 12
                : e51136
                Affiliations
                [1 ]Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
                [2 ]Department of Epidemiology, Centre of Public Health, Medical University of Vienna, Vienna, Austria
                [3 ]Austrian Institute of Technology, Vienna, Austria
                Ghent University, Belgium
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: CJG MG WM. Performed the experiments: CJG. Analyzed the data: CJG KV. Contributed reagents/materials/analysis tools: TW. Wrote the paper: CJG MG WM.

                Article
                PONE-D-12-18682
                10.1371/journal.pone.0051136
                3519484
                23251436
                8a1f13d7-0e03-41a7-a357-68ec548dd638
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 28 June 2012
                : 29 October 2012
                Page count
                Pages: 10
                Funding
                This work was supported by the European Union, FP7 Health Research, project number HEALTH-F4-2008-202047. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational Biology
                Genomics
                Genome Analysis Tools
                Transcriptomes
                Molecular Genetics
                Gene Expression
                Microarrays
                Signaling Networks
                Medicine
                Clinical Research Design
                Meta-Analyses
                Oncology
                Basic Cancer Research

                Uncategorized
                Uncategorized

                Comments

                Comment on this article