10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lessons from One Fastidious Bacterium to Another: What Can We Learn about Liberibacter Species from Xylella fastidiosa

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Huanglongbing is causing economic devastation to the citrus industry in Florida, and threatens the industry everywhere the bacterial pathogens in the Candidatus Liberibacter genus and their insect vectors are found. Bacteria in the genus cannot be cultured and no durable strategy is available for growers to control plant infection or pathogen transmission. However, scientists and grape growers were once in a comparable situation after the emergence of Pierce’s disease, which is caused by Xylella fastidiosa and spread by its hemipteran insect vector. Proactive quarantine and vector control measures coupled with interdisciplinary data-driven science established control of this devastating disease and pushed the frontiers of knowledge in the plant pathology and vector biology fields. Our review highlights the successful strategies used to understand and control X. fastidiosa and their potential applicability to the liberibacters associated with citrus greening, with a focus on the interactions between bacterial pathogen and insect vector. By placing the study of Candidatus Liberibacter spp. within the current and historical context of another fastidious emergent plant pathogen, future basic and applied research to develop control strategies can be prioritized.

          Related collections

          Most cited references138

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla.

          The analysis of the first plant genomes provided unexpected evidence for genome duplication events in species that had previously been considered as true diploids on the basis of their genetics. These polyploidization events may have had important consequences in plant evolution, in particular for species radiation and adaptation and for the modulation of functional capacities. Here we report a high-quality draft of the genome sequence of grapevine (Vitis vinifera) obtained from a highly homozygous genotype. The draft sequence of the grapevine genome is the fourth one produced so far for flowering plants, the second for a woody species and the first for a fruit crop (cultivated for both fruit and beverage). Grapevine was selected because of its important place in the cultural heritage of humanity beginning during the Neolithic period. Several large expansions of gene families with roles in aromatic features are observed. The grapevine genome has not undergone recent genome duplication, thus enabling the discovery of ancestral traits and features of the genetic organization of flowering plants. This analysis reveals the contribution of three ancestral genomes to the grapevine haploid content. This ancestral arrangement is common to many dicotyledonous plants but is absent from the genome of rice, which is a monocotyledon. Furthermore, we explain the chronology of previously described whole-genome duplication events in the evolution of flowering plants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Current epidemiological understanding of citrus Huanglongbing .

            Huanglongbing (HLB) is the most destructive citrus pathosystem worldwide. Previously known primarily from Asia and Africa, it was introduced into the Western Hemisphere in 2004. All infected commercial citrus industries continue to decline owing to inadequate current control methods. HLB increase and regional spatial spread, related to vector populations, are rapid compared with other arboreal pathosystems. Disease dynamics result from multiple simultaneous spatial processes, suggesting that psyllid vector transmission is a continuum from local area to very long distance. Evolutionarily, HLB appears to have originated as an insect endosymbiont that has moved into plants. Lack of exposure of citrus to the pathogen prior to approximately 100 years ago did not provide sufficient time for development of resistance. A prolonged incubation period and regional dispersal make eradication nonviable. Multiple asymptomatic infections per symptomatic tree, incomplete systemic distribution within trees, and prolonged incubation period make detection difficult and greatly complicate disease control.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Will plant movements keep up with climate change?

              In the face of anthropogenic climate change, species must acclimate, adapt, move, or die. Although some species are moving already, their ability to keep up with the faster changes expected in the future is unclear. 'Migration lag' is a particular concern with plants, because it could threaten both biodiversity and carbon storage. Plant movements are not realistically represented in models currently used to predict future vegetation and carbon-cycle feedbacks, so there is an urgent need to understand how much of a problem failure to track climate change is likely to be. Therefore, in this review, we compare how fast plants need to move with how fast they can move; that is, the velocity of climate change with the velocity of plant movement. Copyright © 2013 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Insects
                Insects
                insects
                Insects
                MDPI
                2075-4450
                16 September 2019
                September 2019
                : 10
                : 9
                : 300
                Affiliations
                [1 ]Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
                [2 ]Boyce Thomson Institute, Ithaca, NY 14853, USA
                [3 ]Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, United States Department of Agriculture Agricultural Research Service (USDA ARS), Ithaca, NY 14853, USA
                Author notes
                [* ]Correspondence: mlc68@ 123456cornell.edu ; Tel.: +1-607-254-5262
                Author information
                https://orcid.org/0000-0001-8776-2769
                https://orcid.org/0000-0003-0921-4489
                Article
                insects-10-00300
                10.3390/insects10090300
                6780969
                31527458
                8a899725-1838-491c-b434-a085fb6496b6
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 July 2019
                : 12 September 2019
                Categories
                Review

                huanglongbing,candidatus liberibacter asiaticus,diaphorina citri,citrus greening,xylella fastidiosa,homalodisca vitripennis,pierce’s disease,plant pathology,vector biology,bacteriology,bacterial pathogen transmission,hemiptera,biological control

                Comments

                Comment on this article