10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Mechanisms and Metabolomics of Natural Polyphenols Interfering with Breast Cancer Metastasis

      review-article
      , * , *
      Molecules
      MDPI
      natural polyphenols, breast cancer metastasis, metabolomics

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metastatic cancers are the main cause of cancer-related death. In breast primary cancer, the five-year survival rate is close to 100%; however, for metastatic breast cancer, that rate drops to a mere 25%, due in part to the paucity of effective therapeutic options for treating metastases. Several in vitro and in vivo studies have indicated that consumption of natural polyphenols significantly reduces the risk of cancer metastasis. Therefore, this review summarizes the research findings involving the molecular mechanisms and metabolomics of natural polyphenols and how they may be blocking breast cancer metastasis. Most natural polyphenols are thought to impair breast cancer metastasis through downregulation of MMPs expression, interference with the VEGF signaling pathway, modulation of EMT regulator, inhibition of NF-κB and mTOR expression, and other related mechanisms. Intake of natural polyphenols has been shown to impact endogenous metabolites and complex biological metabolic pathways in vivo. Breast cancer metastasis is a complicated process in which each step is modulated by a complex network of signaling pathways. We hope that by detailing the reported interactions between breast cancer metastasis and natural polyphenols, more attention will be directed to these promising candidates as effective adjunct therapies against metastatic breast cancer in the clinic.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: found
          • Article: not found

          Genes that mediate breast cancer metastasis to the brain.

          The molecular basis for breast cancer metastasis to the brain is largely unknown. Brain relapse typically occurs years after the removal of a breast tumour, suggesting that disseminated cancer cells must acquire specialized functions to take over this organ. Here we show that breast cancer metastasis to the brain involves mediators of extravasation through non-fenestrated capillaries, complemented by specific enhancers of blood-brain barrier crossing and brain colonization. We isolated cells that preferentially infiltrate the brain from patients with advanced disease. Gene expression analysis of these cells and of clinical samples, coupled with functional analysis, identified the cyclooxygenase COX2 (also known as PTGS2), the epidermal growth factor receptor (EGFR) ligand HBEGF, and the alpha2,6-sialyltransferase ST6GALNAC5 as mediators of cancer cell passage through the blood-brain barrier. EGFR ligands and COX2 were previously linked to breast cancer infiltration of the lungs, but not the bones or liver, suggesting a sharing of these mediators in cerebral and pulmonary metastases. In contrast, ST6GALNAC5 specifically mediates brain metastasis. Normally restricted to the brain, the expression of ST6GALNAC5 in breast cancer cells enhances their adhesion to brain endothelial cells and their passage through the blood-brain barrier. This co-option of a brain sialyltransferase highlights the role of cell-surface glycosylation in organ-specific metastatic interactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NF-kappaB in cancer: from innocent bystander to major culprit.

            Nuclear factor of kappaB (NF-kappaB) is a sequence-specific transcription factor that is known to be involved in the inflammatory and innate immune responses. Although the importance of NF-KB in immunity is undisputed, recent evidence indicates that NF-kappaB and the signalling pathways that are involved in its activation are also important for tumour development. NF-kappaB should therefore receive as much attention from cancer researchers as it has already from immunologists.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting.

              Matrix metalloproteinases (MMPs) consist of a multigene family of zinc-dependent extracellular matrix (ECM) remodeling endopeptidases implicated in pathological processes, such as carcinogenesis. In this regard, their activity plays a pivotal role in tumor growth and the multistep processes of invasion and metastasis, including proteolytic degradation of ECM, alteration of the cell-cell and cell-ECM interactions, migration and angiogenesis. The underlying premise of the current minireview is that MMPs are able to proteolytically process substrates in the extracellular milieu and, in so doing, promote tumor progression. However, certain members of the MMP family exert contradicting roles at different stages during cancer progression, depending among other factors on the tumor stage, tumor site, enzyme localization and substrate profile. MMPs are therefore amenable to therapeutic intervention by synthetic and natural inhibitors, providing perspectives for future studies. Multiple therapeutic agents, called matrix metalloproteinase inhibitors (MMPIs) have been developed to target MMPs, attempting to control their enzymatic activity. Even though clinical trials with these compounds do not show the expected results in most cases, the field of MMPIs is ongoing. This minireview critically evaluates the role of MMPs in relation to cancer progression, and highlights the challenges, as well as future prospects, for the design, development and efficacy of MMPIs. © 2010 The Authors Journal compilation © 2010 FEBS.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                17 December 2016
                December 2016
                : 21
                : 12
                : 1634
                Affiliations
                Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing100875, China; ciyingqian1127@ 123456163.com
                Author notes
                [* ]Correspondence: qiao_jinping@ 123456bnu.edu.cn (J.Q.); hanmei@ 123456bnu.edu.cn (M.H.); Tel.: +86-10-6220-7786 (J.Q. & M.H.)
                Article
                molecules-21-01634
                10.3390/molecules21121634
                6273039
                27999314
                8afa7811-3e39-462f-8e2c-3638105ac36c
                © 2016 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 August 2016
                : 21 November 2016
                Categories
                Review

                natural polyphenols,breast cancer metastasis,metabolomics

                Comments

                Comment on this article