16
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pathologists and entomologists must join forces against forest pest and pathogen invasions

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The world’s forests have never been more threatened by invasions of exotic pests and pathogens, whose causes and impacts are reinforced by global change. However, forest entomologists and pathologists have, for too long, worked independently, used different concepts and proposed specific management methods without recognising parallels and synergies between their respective fields. Instead, we advocate increased collaboration between these two scientific communities to improve the long-term health of forests. Our arguments are that the pathways of entry of exotic pests and pathogens are often the same and that insects and fungi often coexist in the same affected trees. Innovative methods for preventing invasions, early detection and identification of non-native species, modelling of their impact and spread and prevention of damage by increasing the resistance of ecosystems can be shared for the management of both pests and diseases. We, therefore, make recommendations to foster this convergence, proposing in particular the development of interdisciplinary research programmes, the development of generic tools or methods for pest and pathogen management and capacity building for the education and training of students, managers, decision-makers and citizens concerned with forest health.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: not found

          Phylogenetic species recognition and species concepts in fungi.

          The operational species concept, i.e., the one used to recognize species, is contrasted to the theoretical species concept. A phylogenetic approach to recognize fungal species based on concordance of multiple gene genealogies is compared to those based on morphology and reproductive behavior. Examples where Phylogenetic Species Recognition has been applied to fungi are reviewed and concerns regarding Phylogenetic Species Recognition are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Forest disturbances under climate change

            Forest disturbances are sensitive to climate. However, our understanding of disturbance dynamics in response to climatic changes remains incomplete, particularly regarding large-scale patterns, interaction effects and dampening feedbacks. Here we provide a global synthesis of climate change effects on important abiotic (fire, drought, wind, snow and ice) and biotic (insects and pathogens) disturbance agents. Warmer and drier conditions particularly facilitate fire, drought and insect disturbances, while warmer and wetter conditions increase disturbances from wind and pathogens. Widespread interactions between agents are likely to amplify disturbances, while indirect climate effects such as vegetation changes can dampen long-term disturbance sensitivities to climate. Future changes in disturbance are likely to be most pronounced in coniferous forests and the boreal biome. We conclude that both ecosystems and society should be prepared for an increasingly disturbed future of forests.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Guidance on quantitative pest risk assessment

              Abstract This Guidance describes a two‐phase approach for a fit‐for‐purpose method for the assessment of plant pest risk in the territory of the EU. Phase one consists of pest categorisation to determine whether the pest has the characteristics of a quarantine pest or those of a regulated non‐quarantine pest for the area of the EU. Phase two consists of pest risk assessment, which may be requested by the risk managers following the pest categorisation results. This Guidance provides a template for pest categorisation and describes in detail the use of modelling and expert knowledge elicitation to conduct a pest risk assessment. The Guidance provides support and a framework for assessors to provide quantitative estimates, together with associated uncertainties, regarding the entry, establishment, spread and impact of plant pests in the EU. The Guidance allows the effectiveness of risk reducing options (RROs) to be quantitatively assessed as an integral part of the assessment framework. A list of RROs is provided. A two‐tiered approach is proposed for the use of expert knowledge elicitation and modelling. Depending on data and resources available and the needs of risk managers, pest entry, establishment, spread and impact steps may be assessed directly, using weight of evidence and quantitative expert judgement (first tier), or they may be elaborated in substeps using quantitative models (second tier). An example of an application of the first tier approach is provided. Guidance is provided on how to derive models of appropriate complexity to conduct a second tier assessment. Each assessment is operationalised using Monte Carlo simulations that can compare scenarios for relevant factors, e.g. with or without RROs. This document provides guidance on how to compare scenarios to draw conclusions on the magnitude of pest risks and the effectiveness of RROs and on how to communicate assessment results.
                Bookmark

                Author and article information

                Journal
                NeoBiota
                NB
                Pensoft Publishers
                1314-2488
                1619-0033
                July 10 2020
                July 10 2020
                : 58
                : 107-127
                Article
                10.3897/neobiota.58.54389
                8d050cdb-6acb-40a0-a395-a06e2561c10a
                © 2020

                https://creativecommons.org/share-your-work/public-domain/cc0/

                History

                Comments

                Comment on this article