27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Merged Group Tractography Evaluation with Selective Automated Group Integrated Tractography

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction: Tractography analysis in group-based studies across large populations has been difficult to implement. We propose Selective Automated Group Integrated Tractography (SAGIT), an automated group tractography software platform that incorporates multiple diffusion magnetic resonance imaging (dMRI) practices which will allow great accessibility to group-wise dMRI. We use a merged tractography approach that permits evaluation of tractography datasets at the group level. We also introduce an image normalized overlap score (NOS) that measures the quality of the group tractography results. We deploy SAGIT to evaluate deterministic and probabilistic constrained spherical deconvolution (CST det , CST prob ) tractography, eXtended Streamline Tractography (XST), and diffusion tensor tractography (DTT) in their ability to delineate different neuroanatomy, as well as validating NOS across these different brain regions.

          Materials and methods: Magnetic resonance sequences were acquired from 42 healthy adults. Anatomical and group registrations were performed using Automated Normalization Tools. Cortical segmentation was performed using FreeSurfer. Four tractography algorithms were used to delineate six sets of neuroanatomy: fornix, facial/vestibular-cochlear cranial nerve complex, vagus nerve, rubral–cerebellar decussation, optic radiation, and auditory radiation. The tracts were generated both with and without region of interest filters. The generated visual reports were then evaluated by five neuroscientists.

          Results: At a group level, merged tractography demonstrated that different methods have different fiber distribution characteristics. CST prob is prone to false-positives, and thereby suitable in anatomy with strong priors. CST det and XST are more conservative, but have greater difficulty resolving hemispherical decussation and distant crossing projections. DTT consistently shows the worst reproducibility across the anatomies. Linear regression of rater scores against NOS shows significant ( p < 0.05) correlation of the two sets of scores in filtered tractography. However, correlations are not significant ( p > 0.05) for unfiltered tractography.

          Conclusion: The tractography results demonstrated reliable and consistent performance of SAGIT across multiple subjects and techniques. Through SAGIT, we quantifiably demonstrated that different algorithms showed different strengths and weaknesses at a group level. While no single algorithm seems to be suitable for all anatomical tasks, it is useful to consider the use of a mix of algorithms for different anatomical segments. SAGIT appears to be a promising group-wise tractography analysis approach for this purpose.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration.

          All fields of neuroscience that employ brain imaging need to communicate their results with reference to anatomical regions. In particular, comparative morphometry and group analysis of functional and physiological data require coregistration of brains to establish correspondences across brain structures. It is well established that linear registration of one brain to another is inadequate for aligning brain structures, so numerous algorithms have emerged to nonlinearly register brains to one another. This study is the largest evaluation of nonlinear deformation algorithms applied to brain image registration ever conducted. Fourteen algorithms from laboratories around the world are evaluated using 8 different error measures. More than 45,000 registrations between 80 manually labeled brains were performed by algorithms including: AIR, ANIMAL, ART, Diffeomorphic Demons, FNIRT, IRTK, JRD-fluid, ROMEO, SICLE, SyN, and four different SPM5 algorithms ("SPM2-type" and regular Normalization, Unified Segmentation, and the DARTEL Toolbox). All of these registrations were preceded by linear registration between the same image pairs using FLIRT. One of the most significant findings of this study is that the relative performances of the registration methods under comparison appear to be little affected by the choice of subject population, labeling protocol, and type of overlap measure. This is important because it suggests that the findings are generalizable to new subject populations that are labeled or evaluated using different labeling protocols. Furthermore, we ranked the 14 methods according to three completely independent analyses (permutation tests, one-way ANOVA tests, and indifference-zone ranking) and derived three almost identical top rankings of the methods. ART, SyN, IRTK, and SPM's DARTEL Toolbox gave the best results according to overlap and distance measures, with ART and SyN delivering the most consistently high accuracy across subjects and label sets. Updates will be published on the http://www.mindboggle.info/papers/ website.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            MRtrix: Diffusion tractography in crossing fiber regions

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers.

              MRI tractography is the mapping of neural fiber pathways based on diffusion MRI of tissue diffusion anisotropy. Tractography based on diffusion tensor imaging (DTI) cannot directly image multiple fiber orientations within a single voxel. To address this limitation, diffusion spectrum MRI (DSI) and related methods were developed to image complex distributions of intravoxel fiber orientation. Here we demonstrate that tractography based on DSI has the capacity to image crossing fibers in neural tissue. DSI was performed in formalin-fixed brains of adult macaque and in the brains of healthy human subjects. Fiber tract solutions were constructed by a streamline procedure, following directions of maximum diffusion at every point, and analyzed in an interactive visualization environment (TrackVis). We report that DSI tractography accurately shows the known anatomic fiber crossings in optic chiasm, centrum semiovale, and brainstem; fiber intersections in gray matter, including cerebellar folia and the caudate nucleus; and radial fiber architecture in cerebral cortex. In contrast, none of these examples of fiber crossing and complex structure was identified by DTI analysis of the same data sets. These findings indicate that DSI tractography is able to image crossing fibers in neural tissue, an essential step toward non-invasive imaging of connectional neuroanatomy.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neuroanat
                Front Neuroanat
                Front. Neuroanat.
                Frontiers in Neuroanatomy
                Frontiers Media S.A.
                1662-5129
                13 October 2016
                2016
                : 10
                : 96
                Affiliations
                [1] 1Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto ON, Canada
                [2] 2Krembil Research Institute, University Health Network, Toronto ON, Canada
                [3] 3Division of Neurosurgery, Toronto Western Hospital and University of Toronto, Toronto ON, Canada
                [4] 4Joint Department of Medical Imaging, University Health Network, Toronto ON, Canada
                Author notes

                Edited by: Jackson Cioni Bittencourt, University of São Paulo, Brazil

                Reviewed by: Hui-Yun Chang, National Tsing Hua University, Taiwan; Jingwen Niu, Temple University, USA

                *Correspondence: Mojgan Hodaie, smojgan.hodaie@ 123456uhn.ca
                Article
                10.3389/fnana.2016.00096
                5061742
                8d438508-501a-436e-b799-bb56269af9df
                Copyright © 2016 Chen, Zhong, Hayes, Behan, Walker, Hung and Hodaie.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 July 2016
                : 27 September 2016
                Page count
                Figures: 7, Tables: 0, Equations: 1, References: 37, Pages: 11, Words: 0
                Funding
                Funded by: Multiple Sclerosis Society of Canada 10.13039/501100000261
                Award ID: 2015, 1712
                Categories
                Neuroanatomy
                Original Research

                Neurosciences
                tractography,group-wise tractography,merged tractography,diffusion imaging,pipeline,multi-tensor,hardi

                Comments

                Comment on this article