1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ripple-triggered stimulation of the locus coeruleus during post-learning sleep disrupts ripple/spindle coupling and impairs memory consolidation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Experience-induced replay of neuronal ensembles occurs during hippocampal high-frequency oscillations, or ripples. Post-learning increase in ripple rate is predictive of memory recall, while ripple disruption impairs learning. Ripples may thus present a fundamental component of a neurophysiological mechanism of memory consolidation. In addition to system-level local and cross-regional interactions, a consolidation mechanism involves stabilization of memory representations at the synaptic level. Synaptic plasticity within experience-activated neuronal networks is facilitated by noradrenaline release from the axon terminals of the locus coeruleus (LC). Here, to better understand interactions between the system and synaptic mechanisms underlying “off-line” consolidation, we examined the effects of ripple-associated LC activation on hippocampal and cortical activity and on spatial memory. Rats were trained on a radial maze; after each daily learning session neural activity was monitored for 1 h via implanted electrode arrays. Immediately following “on-line” detection of ripple, a brief train of electrical pulses (0.05 mA) was applied to LC. Low-frequency (20 Hz) stimulation had no effect on spatial learning, while higher-frequency (100 Hz) trains transiently blocked generation of ripple-associated cortical spindles and caused a reference memory deficit. Suppression of synchronous ripple/spindle events appears to interfere with hippocampal-cortical communication, thereby reducing the efficiency of “off-line” memory consolidation.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path.

          1. The after-effects of repetitive stimulation of the perforant path fibres to the dentate area of the hippocampal formation have been examined with extracellular micro-electrodes in rabbits anaesthetized with urethane.2. In fifteen out of eighteen rabbits the population response recorded from granule cells in the dentate area to single perforant path volleys was potentiated for periods ranging from 30 min to 10 hr after one or more conditioning trains at 10-20/sec for 10-15 sec, or 100/sec for 3-4 sec.3. The population response was analysed in terms of three parameters: the amplitude of the population excitatory post-synaptic potential (e.p.s.p.), signalling the depolarization of the granule cells, and the amplitude and latency of the population spike, signalling the discharge of the granule cells.4. All three parameters were potentiated in 29% of the experiments; in other experiments in which long term changes occurred, potentiation was confined to one or two of the three parameters. A reduction in the latency of the population spike was the commonest sign of potentiation, occurring in 57% of all experiments. The amplitude of the population e.p.s.p. was increased in 43%, and of the population spike in 40%, of all experiments.5. During conditioning at 10-20/sec there was massive potentiation of the population spike (;frequency potentiation'). The spike was suppressed during stimulation at 100/sec. Both frequencies produced long-term potentiation.6. The results suggest that two independent mechanisms are responsible for long-lasting potentiation: (a) an increase in the efficiency of synaptic transmission at the perforant path synapses; (b) an increase in the excitability of the granule cell population.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The memory function of sleep.

            Sleep has been identified as a state that optimizes the consolidation of newly acquired information in memory, depending on the specific conditions of learning and the timing of sleep. Consolidation during sleep promotes both quantitative and qualitative changes of memory representations. Through specific patterns of neuromodulatory activity and electric field potential oscillations, slow-wave sleep (SWS) and rapid eye movement (REM) sleep support system consolidation and synaptic consolidation, respectively. During SWS, slow oscillations, spindles and ripples - at minimum cholinergic activity - coordinate the re-activation and redistribution of hippocampus-dependent memories to neocortical sites, whereas during REM sleep, local increases in plasticity-related immediate-early gene activity - at high cholinergic and theta activity - might favour the subsequent synaptic consolidation of memories in the cortex.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The locus coeruleus and noradrenergic modulation of cognition.

              Susan Sara (2009)
              Mood, attention and motivation co-vary with activity in the neuromodulatory systems of the brain to influence behaviour. These psychological states, mediated by neuromodulators, have a profound influence on the cognitive processes of attention, perception and, particularly, our ability to retrieve memories from the past and make new ones. Moreover, many psychiatric and neurodegenerative disorders are related to dysfunction of these neuromodulatory systems. Neurons of the brainstem nucleus locus coeruleus are the sole source of noradrenaline, a neuromodulator that has a key role in all of these forebrain activities. Elucidating the factors that control the activity of these neurons and the effect of noradrenaline in target regions is key to understanding how the brain allocates attention and apprehends the environment to select, store and retrieve information for generating adaptive behaviour.
                Bookmark

                Author and article information

                Journal
                Learn Mem
                Learn. Mem
                learnmem
                Learning & Memory
                Cold Spring Harbor Laboratory Press
                1072-0502
                1549-5485
                May 2016
                : 23
                : 5
                : 238-248
                Affiliations
                [1 ]Max Planck Institute for Biological Cybernetics, Tubingen 72076, Germany
                [2 ]Center for Integrative Research in Biology, CNRS-UMR7152, Collège de France, Paris 75005, France
                [3 ]Department of Child and Adolescent Psychiatry, New York University Medical School, New York, New York 10016, USA
                [4 ]Centre for Imaging Sciences, Biomedical Imaging Institute, University of Manchester, Manchester M13 9PT, United Kingdom
                Author notes
                Article
                NovitskayaLM040923
                10.1101/lm.040923.115
                4836638
                27084931
                8d914f75-a441-468d-874b-754725f74f5e
                © 2016 Novitskaya et al.; Published by Cold Spring Harbor Laboratory Press

                This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first 12 months after the full-issue publication date (see http://learnmem.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 4 November 2015
                : 28 February 2016
                Funding
                Funded by: European Commission http://dx.doi.org/10.13039/501100000780
                Award ID: FP7-284553
                Categories
                Research

                Comments

                Comment on this article