1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HamilToniQ: An Open-Source Benchmark Toolkit for Quantum Computers

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this paper, we introduce HamilToniQ, an open-source, and application-oriented benchmarking toolkit for the comprehensive evaluation of Quantum Processing Units (QPUs). Designed to navigate the complexities of quantum computations, HamilToniQ incorporates a methodological framework assessing QPU types, topologies, and multi-QPU systems. The toolkit facilitates the evaluation of QPUs' performance through multiple steps including quantum circuit compilation and quantum error mitigation (QEM), integrating strategies that are unique to each stage. HamilToniQ's standardized score, H-Score, quantifies the fidelity and reliability of QPUs, providing a multidimensional perspective of QPU performance. With a focus on the Quantum Approximate Optimization Algorithm (QAOA), the toolkit enables direct, comparable analysis of QPUs, enhancing transparency and equity in benchmarking. Demonstrated in this paper, HamilToniQ has been validated on various IBM QPUs, affirming its effectiveness and robustness. Overall, HamilToniQ significantly contributes to the advancement of the quantum computing field by offering precise and equitable benchmarking metrics.

          Related collections

          Author and article information

          Journal
          22 April 2024
          Article
          2404.13971
          8de092b3-1e3a-446b-af73-b59277582c20

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          11 pages, 13 figures
          quant-ph cs.DC cs.SE

          Software engineering,Quantum physics & Field theory,Networking & Internet architecture

          Comments

          Comment on this article