Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxidant Exposure Induces Cysteine-Rich Protein 61 (CCN1) via c-Jun/AP-1 to Reduce Collagen Expression in Human Dermal Fibroblasts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human skin is a primary target of oxidative stress from reactive oxygen species (ROS) generated from both extrinsic and intrinsic sources. Oxidative stress inhibits the production of collagen, the most abundant protein in skin, and thus contributes to connective tissue aging. Here we report that cysteine-rich protein 61 (CCN1), a negative regulator of collagen production, is markedly induced by ROS and mediates loss of type I collagen in human dermal fibroblasts. Conversely, antioxidant N-acetyl-L-cysteine significantly reduced CCN1 expression and prevented ROS-induced loss of type I collagen in both human dermal fibroblasts and human skin in vivo. ROS increased c-Jun, a critical member of transcription factor AP-1 complex, and increased c-Jun binding to the AP-1 site of the CCN1 promoter. Functional blocking of c-Jun significantly reduced CCN1 promoter and gene expression and thus prevented ROS-induced loss of type I collagen. Targeting the c-Jun/CCN1 axis may provide clinical benefit for connective tissue aging in human skin.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression.

          Tumors are like new organs and are made of multiple cell types and components. The tumor competes with the normal microenvironment to overcome antitumorigenic pressures. Before that battle is won, the tumor may exist within the organ unnoticed by the host, referred to as 'occult cancer'. We review how normal tissue homeostasis and architecture inhibit progression of cancer and how changes in the microenvironment can shift the balance of these signals to the procancerous state. We also include a discussion of how this information is being tailored for clinical use.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathophysiology of premature skin aging induced by ultraviolet light.

            Long-term exposure to ultraviolet irradiation from sunlight causes premature skin aging (photoaging), characterized in part by wrinkles, altered pigmentation, and loss of skin tone. Photoaged skin displays prominent alterations in the collagenous extracellular matrix of connective tissue. We investigated the role of matrix-degrading metalloproteinases, a family of proteolytic enzymes, as mediators of collagen damage in photoaging. We studied 59 whites (33 men and 26 women, ranging in age from 21 to 58 years) with light-to-moderate skin pigmentation, none of whom had current or prior skin disease. Only some of the participants were included in each of the studies. We irradiated their buttock skin with fluorescent ultraviolet lights under standard conditions and obtained skin samples from irradiated and nonirradiated areas by keratome or punch biopsy. In some studies, tretinoin and its vehicle were applied to skin under occlusion 48 hours before ultraviolet irradiation. The expression of matrix metalloproteinases was determined by in situ hybridization, immunohistology, and in situ zymography. Irradiation-induced degradation of skin collagen was measured by radioimmunoassay of soluble cross-linked telopeptides. The protein level of tissue inhibitor of matrix metalloproteinases type 1 was determined by Western blot analysis. A single exposure to ultraviolet irradiation increased the expression of three matrix metalloproteinases -- collagenase, a 92-kd gelatinase, and stromelysin -- in skin connective tissue and outer skin layers, as compared with nonirradiated skin. The degradation of endogenous type I collagen fibrils was increased by 58 percent in irradiated skin, as compared with nonirradiated skin. Collagenase and gelatinase activity remained maximally elevated (4.4 and 2.3 times, respectively) for seven days with four exposures to ultraviolet irradiation, delivered at two-day intervals, as compared with base-line levels. Pretreatment of skin with tretinoin (all-trans-retinoic acid) inhibited the induction of matrix metalloproteinase proteins and activity (by 70 to 80 percent) in both connective tissue and outer layers of irradiated skin. Ultraviolet irradiation also induced tissue inhibitor of matrix metalloproteinases-1, which regulates the enzyme. Induction of the inhibitor was not affected by tretinoin. Multiple exposures to ultraviolet irradiation lead to sustained elevations of matrix metalloproteinases that degrade skin collagen and may contribute to photoaging. Treatment with topical tretinoin inhibits irradiation-induced matrix metalloproteinases but not their endogenous inhibitor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Taking aim at the extracellular matrix: CCN proteins as emerging therapeutic targets.

              Members of the CCN family of matricellular proteins are crucial for embryonic development and have important roles in inflammation, wound healing and injury repair in adulthood. Deregulation of CCN protein expression or activities contributes to the pathobiology of various diseases - many of which may arise when inflammation or tissue injury becomes chronic - including fibrosis, atherosclerosis, arthritis and cancer, as well as diabetic nephropathy and retinopathy. Emerging studies indicate that targeting CCN protein expression or signalling pathways holds promise in the development of diagnostics and therapeutics for such diseases. This Review summarizes the biology of CCN proteins, their roles in various pathologies and their potential as therapeutic targets.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                23 December 2014
                : 9
                : 12
                : e115402
                Affiliations
                [1]Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
                The University of Hong Kong, Hong Kong
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ZQ GJF TQ. Performed the experiments: ZQ PR TH TQ. Analyzed the data: ZQ PR TH TQ. Contributed reagents/materials/analysis tools: TQ GJF. Contributed to the writing of the manuscript: TQ JJV GJF.

                Article
                PONE-D-14-36498
                10.1371/journal.pone.0115402
                4275215
                25536346
                8de6046a-27a0-4d04-bfb4-35c48455a2d0
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 August 2014
                : 21 November 2014
                Page count
                Pages: 19
                Funding
                This work was supported by National Institutes of Health grants RO1-ES014697; NIH RO1-ES014697-S1; and NIH RO1-AG019364. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Oxidative Stress
                Signal Transduction
                Molecular Biology
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article