5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Disentangling protist communities identified from DNA and RNA surveys in the Pearl River-South China Sea Continuum during the wet and dry seasons

      1 , 2 , 2 , 3
      Molecular Ecology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Microbial biogeography: putting microorganisms on the map.

          We review the biogeography of microorganisms in light of the biogeography of macroorganisms. A large body of research supports the idea that free-living microbial taxa exhibit biogeographic patterns. Current evidence confirms that, as proposed by the Baas-Becking hypothesis, 'the environment selects' and is, in part, responsible for spatial variation in microbial diversity. However, recent studies also dispute the idea that 'everything is everywhere'. We also consider how the processes that generate and maintain biogeographic patterns in macroorganisms could operate in the microbial world.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dormancy contributes to the maintenance of microbial diversity.

            Dormancy is a bet-hedging strategy used by a variety of organisms to overcome unfavorable environmental conditions. By entering a reversible state of low metabolic activity, dormant individuals become members of a seed bank, which can determine community dynamics in future generations. Although microbiologists have documented dormancy in both clinical and natural settings, the importance of seed banks for the diversity and functioning of microbial communities remains untested. Here, we develop a theoretical model demonstrating that microbial communities are structured by environmental cues that trigger dormancy. A molecular survey of lake ecosystems revealed that dormancy plays a more important role in shaping bacterial communities than eukaryotic microbial communities. The proportion of dormant bacteria was relatively low in productive ecosystems but accounted for up to 40% of taxon richness in nutrient-poor systems. Our simulations and empirical data suggest that regional environmental cues and dormancy synchronize the composition of active communities across the landscape while decoupling active microbes from the total community at local scales. Furthermore, we observed that rare bacterial taxa were disproportionately active relative to common bacterial taxa, suggesting that microbial rank-abundance curves are more dynamic than previously considered. We propose that repeated transitions to and from the seed bank may help maintain the high levels of microbial biodiversity that are observed in nearly all ecosystems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses.

              Microbes exist in a range of metabolic states (for example, dormant, active and growing) and analysis of ribosomal RNA (rRNA) is frequently employed to identify the 'active' fraction of microbes in environmental samples. While rRNA analyses are no longer commonly used to quantify a population's growth rate in mixed communities, due to rRNA concentration not scaling linearly with growth rate uniformly across taxa, rRNA analyses are still frequently used toward the more conservative goal of identifying populations that are currently active in a mixed community. Yet, evidence indicates that the general use of rRNA as a reliable indicator of metabolic state in microbial assemblages has serious limitations. This report highlights the complex and often contradictory relationships between rRNA, growth and activity. Potential mechanisms for confounding rRNA patterns are discussed, including differences in life histories, life strategies and non-growth activities. Ways in which rRNA data can be used for useful characterization of microbial assemblages are presented, along with questions to be addressed in future studies.
                Bookmark

                Author and article information

                Journal
                Molecular Ecology
                Mol Ecol
                Wiley
                09621083
                November 2018
                November 2018
                October 30 2018
                : 27
                : 22
                : 4627-4640
                Affiliations
                [1 ]School of Marine Sciences; Sun Yat-sen University; Zhuhai Guangdong China
                [2 ]Division of Life Science; The Hong Kong University of Science and Technology; Kowloon, Hong Kong SAR China
                [3 ]Department of Ocean Science; The Hong Kong University of Science and Technology; Kowloon, Hong Kong SAR China
                Article
                10.1111/mec.14867
                30222225
                8f44304a-e2f6-4a08-af88-a40025ec3379
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article