6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Selected Pharmaceuticals in Different Aquatic Compartments: Part I—Source, Fate and Occurrence

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Potential risks associated with releases of human pharmaceuticals into the environment have become an increasingly important issue in environmental health. This concern has been driven by the widespread detection of pharmaceuticals in all aquatic compartments. Therefore, 22 pharmaceuticals, 6 metabolites and transformation products, belonging to 7 therapeutic groups, were selected to perform a systematic review on their source, fate and occurrence in different aquatic compartments, important issues to tackle the Water Framework Directive (WFD). The results obtained evidence that concentrations of pharmaceuticals are present, in decreasing order, in wastewater influents (WWIs), wastewater effluents (WWEs) and surface waters, with values up to 14 mg L −1 for ibuprofen in WWIs. The therapeutic groups which presented higher detection frequencies and concentrations were anti-inflammatories, antiepileptics, antibiotics and lipid regulators. These results present a broad and specialized background, enabling a complete overview on the occurrence of pharmaceuticals in the aquatic compartments.

          Related collections

          Most cited references218

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring.

          This review identifies understudied areas of emerging contaminant (EC) research in wastewaters and the environment, and recommends direction for future monitoring. Non-regulated trace organic ECs including pharmaceuticals, illicit drugs and personal care products are focused on due to ongoing policy initiatives and the expectant broadening of environmental legislation. These ECs are ubiquitous in the aquatic environment, mainly derived from the discharge of municipal wastewater effluents. Their presence is of concern due to the possible ecological impact (e.g., endocrine disruption) to biota within the environment. To better understand their fate in wastewaters and in the environment, a standardised approach to sampling is needed. This ensures representative data is attained and facilitates a better understanding of spatial and temporal trends of EC occurrence. During wastewater treatment, there is a lack of suspended particulate matter analysis due to further preparation requirements and a lack of good analytical approaches. This results in the under-reporting of several ECs entering wastewater treatment works (WwTWs) and the aquatic environment. Also, sludge can act as a concentrating medium for some chemicals during wastewater treatment. The majority of treated sludge is applied directly to agricultural land without analysis for ECs. As a result there is a paucity of information on the fate of ECs in soils and consequently, there has been no driver to investigate the toxicity to exposed terrestrial organisms. Therefore a more holistic approach to environmental monitoring is required, such that the fate and impact of ECs in all exposed environmental compartments are studied. The traditional analytical approach of applying targeted screening with low resolution mass spectrometry (e.g., triple quadrupoles) results in numerous chemicals such as transformation products going undetected. These can exhibit similar toxicity to the parent EC, demonstrating the necessity of using an integrated analytical approach which compliments targeted and non-targeted screening with biological assays to measure ecological impact. With respect to current toxicity testing protocols, failure to consider the enantiomeric distribution of chiral compounds found in the environment, and the possible toxicological differences between enantiomers is concerning. Such information is essential for the development of more accurate environmental risk assessment.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Occurrence of drugs in German sewage treatment plants and rivers1Dedicated to Professor Dr. Klaus Haberer on the occasion of his 70th birthday.1

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment--a review.

              This review focuses on 118 pharmaceuticals, belonging to seventeen different therapeutic classes, detected in raw urban wastewater and effluent from an activated sludge system, a usual treatment adopted for urban wastewaters worldwide prior to final discharge into surface water bodies. Data pertaining to 244 conventional activated sludge systems and 20 membrane biological reactors are analysed and the observed ranges of variability of each selected compound in their influent and effluent reported, with particular reference to the substances detected most frequently and in higher concentrations. A snapshot of the ability of these systems to remove such compounds is provided by comparing their global removal efficiencies for each substance. Where possible, the study then evaluates the average daily mass load of the majority of detected pharmaceuticals exiting the secondary treatment step. The final part of the review provides an assessment of the environmental risk posed by their presence in the secondary effluent by means of the risk quotient that is the ratio between the average pharmaceutical concentration measured in the secondary effluent and the predicted no-effect concentration. Finally, mass load rankings of the compounds under review are compared with those based on their risk level. This analysis shows that the highest amounts discharged through secondary effluent pertain to one antihypertensive, and several beta-blockers and analgesics/anti-inflammatories, while the highest risk is posed by antibiotics and several psychiatric drugs and analgesics/anti-inflammatories. These results are reported with a view to aiding scientists and administrators in planning measures aiming to reduce the impact of treated urban wastewater discharge into surface water bodies. Copyright © 2012 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                25 February 2020
                March 2020
                : 25
                : 5
                : 1026
                Affiliations
                LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Stª Comba, Coimbra, 3000-548, Portugal; ljgsilva@ 123456hotmail.com (L.S.); celialaranjeiro@ 123456gmail.com (C.L.); cmlino@ 123456ci.uc.pt (C.L.); apena@ 123456ci.uc.pt (A.P.)
                Author notes
                [* ]Correspondence: andrepereira@ 123456ff.uc.pt
                Article
                molecules-25-01026
                10.3390/molecules25051026
                7179177
                32106570
                8fefef0c-7d3f-43c9-ac7d-f1506b361d40
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 January 2020
                : 21 February 2020
                Categories
                Review

                environmental contaminants,pharmaceuticals occurrence,pharmaceuticals,aquatic compartments

                Comments

                Comment on this article