Search for authorsSearch for similar articles
0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anti-Inflammatory Mechanisms of Total Flavonoids from Mosla scabra against Influenza A Virus-Induced Pneumonia by Integrating Network Pharmacology and Experimental Verification

      research-article
      1 , 2 ,
      Evidence-based Complementary and Alternative Medicine : eCAM
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Influenza virus is one of the most common infectious pathogens that could cause high morbidity and mortality in humans. However, the occurrence of drug resistance and serious complications extremely complicated the clinic therapy. Mosla scabra is a natural medicinal plant used for treating various lung and gastrointestinal diseases, including viral infection, cough, chronic obstructive pulmonary disease, acute gastroenteritis, and diarrhoea. But the therapeutic effects of this herbal medicine had not been expounded clearly. In this study, a network pharmacology approach was employed to investigate the protective mechanism of total flavonoids from M. scabra (MSTF) against influenza A virus- (IAV-) induced acute lung damage and inflammation. The active compounds of MSTF were analyzed by LC-MS/MS and then evaluated according to their oral bioavailability and drug-likeness index. The potential targets of each active compound in MSTF were identified by using PharmMapper Server, whereas the potential genes involved in IAV infection were obtained from GeneGards. The results showed that luteoloside, apigenin, kaempherol, luteolin, mosloflavone I, and mosloflavone II were the main bioactive compounds found in MSTF. Primarily, 23 genes were identified as the targets of those five active compounds, which contributed to the inactivation of chemical carcinogenesis ROS, lipid and atherosclerosis, MAPK signaling pathway, pathways in cancer, PI3K-AKT signaling pathway, proteoglycans in cancer, and viral carcinogenesis. Finally, the animal experiments validated that MSTF improved IAV-induced acute lung inflammation via inhibiting MAPK, PI3K-AKT, and oxidant stress pathways. Therefore, our study demonstrated the potential inhibition of MSTF on viral pneumonia in mice and provided a strategy to characterize the molecular mechanism of traditional Chinese medicine by a combinative method using network pharmacology and experimental validation.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          TCMSP: a database of systems pharmacology for drug discovery from herbal medicines

          Background Modern medicine often clashes with traditional medicine such as Chinese herbal medicine because of the little understanding of the underlying mechanisms of action of the herbs. In an effort to promote integration of both sides and to accelerate the drug discovery from herbal medicines, an efficient systems pharmacology platform that represents ideal information convergence of pharmacochemistry, ADME properties, drug-likeness, drug targets, associated diseases and interaction networks, are urgently needed. Description The traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) was built based on the framework of systems pharmacology for herbal medicines. It consists of all the 499 Chinese herbs registered in the Chinese pharmacopoeia with 29,384 ingredients, 3,311 targets and 837 associated diseases. Twelve important ADME-related properties like human oral bioavailability, half-life, drug-likeness, Caco-2 permeability, blood-brain barrier and Lipinski’s rule of five are provided for drug screening and evaluation. TCMSP also provides drug targets and diseases of each active compound, which can automatically establish the compound-target and target-disease networks that let users view and analyze the drug action mechanisms. It is designed to fuel the development of herbal medicines and to promote integration of modern medicine and traditional medicine for drug discovery and development. Conclusions The particular strengths of TCMSP are the composition of the large number of herbal entries, and the ability to identify drug-target networks and drug-disease networks, which will help revealing the mechanisms of action of Chinese herbs, uncovering the nature of TCM theory and developing new herb-oriented drugs. TCMSP is freely available at http://sm.nwsuaf.edu.cn/lsp/tcmsp.php.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Innate immunity to influenza virus infection.

            Influenza viruses are a major pathogen of both humans and animals. Recent studies using gene-knockout mice have led to an in-depth understanding of the innate sensors that detect influenza virus infection in a variety of cell types. Signalling downstream of these sensors induces distinct sets of effector mechanisms that block virus replication and promote viral clearance by inducing innate and adaptive immune responses. In this Review, we discuss the various ways in which the innate immune system uses pattern recognition receptors to detect and respond to influenza virus infection. We consider whether the outcome of innate sensor stimulation promotes antiviral resistance or disease tolerance, and propose rational treatment strategies for the acute respiratory disease that is caused by influenza virus infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Network Pharmacology Databases for Traditional Chinese Medicine: Review and Assessment

              The research field of systems biology has greatly advanced and, as a result, the concept of network pharmacology has been developed. This advancement, in turn, has shifted the paradigm from a “one-target, one-drug” mode to a “network-target, multiple-component-therapeutics” mode. Network pharmacology is more effective for establishing a “compound-protein/gene-disease” network and revealing the regulation principles of small molecules in a high-throughput manner. This approach makes it very powerful for the analysis of drug combinations, especially Traditional Chinese Medicine (TCM) preparations. In this work, we first summarized the databases and tools currently used for TCM research. Second, we focused on several representative applications of network pharmacology for TCM research, including studies on TCM compatibility, TCM target prediction, and TCM network toxicology research. Third, we compared the general statistics of several current TCM databases and evaluated and compared the search results of these databases based on 10 famous herbs. In summary, network pharmacology is a rational approach for TCM studies, and with the development of TCM research, powerful and comprehensive TCM databases have emerged but need further improvements. Additionally, given that several diseases could be treated by TCMs, with the mediation of gut microbiota, future studies should focus on both the microbiome and TCMs to better understand and treat microbiome-related diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi
                1741-427X
                1741-4288
                2022
                8 June 2022
                8 June 2022
                : 2022
                : 2154485
                Affiliations
                1Department of Chinese Materia Medica, Zhejiang Pharmaceutical University, Ningbo 315100, China
                2Zhejiang Chinese Medical University, Hangzhou 310053, China
                Author notes

                Academic Editor: Danli Xie

                Author information
                https://orcid.org/0000-0002-8588-6845
                Article
                10.1155/2022/2154485
                9200497
                903ef301-0c5a-4561-9af1-b4172a6517e9
                Copyright © 2022 Wei Cai and Shui-Li Zhang.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 March 2022
                : 11 May 2022
                : 23 May 2022
                Funding
                Funded by: Zhejiang Public Projects
                Award ID: LGF21H280006
                Funded by: Medical Science and Technology Project of Zhejiang Province
                Award ID: 2020KY527
                Categories
                Research Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article