14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Identification and Characterization of Small Molecule Human Papillomavirus E6 Inhibitors

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cervical cancer is the sixth most common cancer in women worldwide and the leading cause of women’s death in developing countries. Nearly all cervical cancers are associated with infection of the human papillomavirus (HPV). This sexually transmitted pathogen disrupts the cell cycle via two oncoproteins: E6 and E7. Cells respond to E7-mediated degradation of pRB by upregulating the p53 tumor suppressor pathway. However, E6 thwarts this response by binding to the cellular E6-Associating Protein (E6AP) and targeting p53 for degradation. These two virus-facilitated processes pave the way for cellular transformation. Prophylactic HPV vaccines are available, but individuals already infected with HPV lack drug-based therapeutic options. To fill this void, we sought to identify small molecule inhibitors of the E6–E6AP interaction. We designed an ELISA-based high throughput assay to rapidly screen compound libraries, and hits were confirmed in several orthogonal biochemical and cell-based assays. Over 88,000 compounds were screened; 30 had in vitro potencies in the mid-nanomolar to mid-micromolar range and were classified as validated hits. Seven of these hits inhibited p53 degradation in cell lines with HPV-integrated genomes. Two compounds of similar scaffold successfully blocked p53 degradation and inhibited cell proliferation in cells stably transfected with E6. Together, these studies suggest that small molecules can successfully block E6-dependent p53 degradation and restore p53 activity. The compounds identified here constitute attractive starting points for further medicinal chemistry efforts and development into beneficial therapeutics.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          The epidemiology of human papillomavirus infections.

          Infection with oncogenic human papillomavirus (HPV) types is a necessary cause of cervical cancer, the second most frequently occurring cancer in women worldwide. Rates of acquisition of HPV are high, particularly among sexually active young adults. Reported estimates of incident HPV infection among initially negative women have reached as high as 60% over a 5-year follow-up period. In this article, we review the epidemiology of HPV infection. In addition to estimates of disease frequency, we highlight risk factors for HPV infection, including the number of lifetime sex partners, which is the most salient risk factor. We discuss significant issues surrounding the natural history of HPV infection, including viral persistence versus clearance, immune response, development of lesions and development of cancer. Finally, we discuss strategies for preventing HPV infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix.

            The cells of a human epithelial cancer cultivated en masse have been shown to support the multiplication of all three types of poliomyelitis virus. These cells (strain HeLa of Gey) have been maintained in vitro since their derivation from an epidermoid carcinoma of the cervix in February, 1951. As the virus multiplied it caused in from 12 to 96 hours degeneration and destruction of the cancer cells. The specific destructive effect of the virus was prevented by adding homotypic antibody to the cultures but not by adding heterotypic antibodies. Methods for the preparation of large numbers of replicate cultures with suspensions of strain HeLa cells were described. The cells in suspension were readily quantitated by direct counts in a hemocytometer. A synthetic solution that maintains cellular viability was employed for viral propagation. The experimental results demonstrate the usefulness of strain HeLa cells for (a) the quantitation of poliomyelitis virus, (b) the measurement of poliomyelitis antibodies, and (c) the production of virus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Papillomavirus infections--a major cause of human cancers.

              The papillomavirus family represents a remarkably heterogeneous group of viruses. At present, 77 distinct genotypes have been identified in humans and partial sequences have been obtained from more than 30 putative novel genotypes. Geographic differences in base composition of individual genotypes are generally small and suggest a low mutation rate and thus an ancient origin of today's prototypes. The relatively small size of the genome permitted an analysis of individual gene functions and of interactions of viral proteins with host cell components. Proliferating cells contain the viral genome in a latent form, large scale viral DNA replication, as well as translation and functional activity of late viral proteins, and viral particle assembly are restricted to differentiating layers of skin and mucosa. In humans papillomavirus infections cause a variety of benign proliferations: warts, epithelial cysts, intraepithelial neoplasias, anogenital, oro-laryngeal and -pharyngeal papillomas, keratoacanthomas and other types of hyperkeratoses. Their involvement in the etiology of some major human cancers is of particular interest: specific types (HPV 16, 18 and several others) have been identified as causative agents of at least 90% of cancers of the cervix and are also linked to more than 50% of other anogenital cancers. These HPV types are considered as 'high risk' infections. Their E6/E7 oncoproteins stimulate cell proliferation by activating cyclins E and A, and interfere with the functions of the cellular proteins RB and p53. The latter interaction appears to be responsible for their mutagenic and aneuploidizing activity as an underlying principle for the progression of these HPV-containing lesions and the role of high risk HPV types as solitary carcinogens. In non-transformed human keratinocytes transcription and function of viral oncoproteins is controlled by intercellular and intracellular signalling cascades, their interruption emerges as a precondition for immortalization and malignant growth. Recently, novel and known HPV types have also been identified in a high percentage of non-melanoma skin cancers (basal and squamous cell carcinomas). Similar to observations in patients with a rare hereditary condition, epidermodysplasia verruciformis, characterized by an extensive verrucosis and development of skin cancer, basal and squamous cell carcinomas develop preferentially in light-exposed sites. This could suggest an interaction between a physical carcinogen (UV-part of the sunlight) and a 'low risk' (non-mutagenic) papillomavirus infection. Reports on the presence of HPV infections in cancers of the oral cavity, the larynx, and the esophagus further emphasize the importance of this virus group as proven and suspected human carcinogens.
                Bookmark

                Author and article information

                Journal
                ACS Chem Biol
                ACS Chem. Biol
                cb
                acbcct
                ACS Chemical Biology
                American Chemical Society
                1554-8929
                1554-8937
                22 May 2015
                22 May 2014
                18 July 2014
                : 9
                : 7
                : 1603-1612
                Affiliations
                []The Wistar Institute , Philadelphia, Pennsylvania 19104, United States
                [99] Department of Chemistry and Department of Biochemistry and Biophysics and The Abramson Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
                [§ ]Lankenau Institute for Medical Research, Chemical Genomics Center, Wynnewood, Pennsylvania 19096, United States
                Author notes
                Article
                10.1021/cb500229d
                4145632
                24854633
                9210ffb0-5d4f-4816-babb-9f2fa1802b22
                Copyright © 2014 American Chemical Society

                Terms of Use

                History
                : 28 March 2014
                : 20 May 2014
                Funding
                National Institutes of Health, United States
                Categories
                Articles
                Custom metadata
                cb500229d
                cb-2014-00229d

                Biochemistry
                Biochemistry

                Comments

                Comment on this article