4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Neuroinvasive potential of a primary respiratory pathogen SARS- CoV2: Summarizing the evidences

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Backround and aims

          After the emergence of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in the last two decades, the world is facing its new challenge in SARS-CoV-2 pandemic with unfathomable global responses. The characteristic clinical symptoms for Coronavirus (COVID-19) affected patients are high fever, dry-cough, dyspnoea, lethal pneumonia whereas some patients also show additional neurological signs such as headache, nausea, vomiting etc. The accumulative evidences suggest that SARS-CoV-2 is not only confined within the respiratory tract but may also invade the central nervous system (CNS) and peripheral nervous system (PNS) inducing some fatal neurological diseases. Here, we analyze the phylogenetic perspective of SARS-CoV-2 with other strains of β-Coronaviridae from a standpoint of neurological spectrum disorders.

          Methodology

          A Pubmed/Medline, NIH Lit Covid, Cochrane library and some open data bases (BioRxiv, MedRxiv,preprint.org and others) search were carried out by using keywords relevant to our topic of discussion. The extracted literatures are scrutinized by the authors.

          Results

          58 literatures including original articles, case reports and case series were selected by the authors to analyze the differential distribution of neurological impairments in COVID-19 positive patients along with angiotensin-converting enzyme-2 (ACE2) expression dynamics in neuronal and non-neuronal tissue in CNS and PNS with neuroinvasive potential of SARS-CoV2.

          Conclusion

          We discuss the need for modulations in clinical approach from a neurological point of view, as a measure towards reducing disease transmission, morbidity and mortality in SARS-CoV2 positive patients.

          Highlights

          • Comparative phylogenetic analysis reveals the neuroinvasive potential of SARS-CoV2.

          • ACE2 expression in neuronal and neuro-glial cells augment neurotropism of SARS-CoV2.

          • Clinical manifestations of COVID-19 from the neurological perspective were presented.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

          Summary Background A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0–58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0–13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding

            Summary Background In late December, 2019, patients presenting with viral pneumonia due to an unidentified microbial agent were reported in Wuhan, China. A novel coronavirus was subsequently identified as the causative pathogen, provisionally named 2019 novel coronavirus (2019-nCoV). As of Jan 26, 2020, more than 2000 cases of 2019-nCoV infection have been confirmed, most of which involved people living in or visiting Wuhan, and human-to-human transmission has been confirmed. Methods We did next-generation sequencing of samples from bronchoalveolar lavage fluid and cultured isolates from nine inpatients, eight of whom had visited the Huanan seafood market in Wuhan. Complete and partial 2019-nCoV genome sequences were obtained from these individuals. Viral contigs were connected using Sanger sequencing to obtain the full-length genomes, with the terminal regions determined by rapid amplification of cDNA ends. Phylogenetic analysis of these 2019-nCoV genomes and those of other coronaviruses was used to determine the evolutionary history of the virus and help infer its likely origin. Homology modelling was done to explore the likely receptor-binding properties of the virus. Findings The ten genome sequences of 2019-nCoV obtained from the nine patients were extremely similar, exhibiting more than 99·98% sequence identity. Notably, 2019-nCoV was closely related (with 88% identity) to two bat-derived severe acute respiratory syndrome (SARS)-like coronaviruses, bat-SL-CoVZC45 and bat-SL-CoVZXC21, collected in 2018 in Zhoushan, eastern China, but were more distant from SARS-CoV (about 79%) and MERS-CoV (about 50%). Phylogenetic analysis revealed that 2019-nCoV fell within the subgenus Sarbecovirus of the genus Betacoronavirus, with a relatively long branch length to its closest relatives bat-SL-CoVZC45 and bat-SL-CoVZXC21, and was genetically distinct from SARS-CoV. Notably, homology modelling revealed that 2019-nCoV had a similar receptor-binding domain structure to that of SARS-CoV, despite amino acid variation at some key residues. Interpretation 2019-nCoV is sufficiently divergent from SARS-CoV to be considered a new human-infecting betacoronavirus. Although our phylogenetic analysis suggests that bats might be the original host of this virus, an animal sold at the seafood market in Wuhan might represent an intermediate host facilitating the emergence of the virus in humans. Importantly, structural analysis suggests that 2019-nCoV might be able to bind to the angiotensin-converting enzyme 2 receptor in humans. The future evolution, adaptation, and spread of this virus warrant urgent investigation. Funding National Key Research and Development Program of China, National Major Project for Control and Prevention of Infectious Disease in China, Chinese Academy of Sciences, Shandong First Medical University.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses

              Graphical abstract
                Bookmark

                Author and article information

                Contributors
                Journal
                Diabetes Metab Syndr
                Diabetes Metab Syndr
                Diabetes & Metabolic Syndrome
                Published by Elsevier Ltd on behalf of Diabetes India.
                1871-4021
                1878-0334
                2 July 2020
                September-October 2020
                2 July 2020
                : 14
                : 5
                : 1053-1060
                Affiliations
                [a ]Institute of Post Graduate Medical Education and Research, SSKM Hospital, Kolkata, India
                [b ]S. N. Pradhan Centre for Neuroscience, University of Calcutta, India
                [c ]Department of Microbiology, University of Calcutta, India
                [d ]Department of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
                Author notes
                []Corresponding author. dlahiri1988@ 123456gmail.com
                Article
                S1871-4021(20)30232-0
                10.1016/j.dsx.2020.06.062
                7331527
                32640417
                922b8a78-0b14-4cd5-8962-324f9baee087
                © 2020 Published by Elsevier Ltd on behalf of Diabetes India.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 16 June 2020
                : 23 June 2020
                : 28 June 2020
                Categories
                Article

                covid-19,ace2,sars-cov2,neurological disorders,phylogenetic perspective,coronavirus,cns,pns

                Comments

                Comment on this article