5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A calcium-sensing receptor mutation causing hypocalcemia disrupts a transmembrane salt bridge to activate β-arrestin–biased signaling

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Comparative Protein Structure Modeling Using MODELLER.

          Functional characterization of a protein sequence is one of the most frequent problems in biology. This task is usually facilitated by accurate three-dimensional (3-D) structure of the studied protein. In the absence of an experimentally determined structure, comparative or homology modeling can sometimes provide a useful 3-D model for a protein that is related to at least one known protein structure. Comparative modeling predicts the 3-D structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. Curr. Protoc. Bioinform. 47:5.6.1-5.6.32. © 2014 by John Wiley & Sons, Inc. Copyright © 2014 John Wiley & Sons, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anatomical profiling of G protein-coupled receptor expression.

            G protein-coupled receptors (GPCRs) comprise the largest family of transmembrane signaling molecules and regulate a host of physiological and disease processes. To better understand the functions of GPCRs in vivo, we quantified transcript levels of 353 nonodorant GPCRs in 41 adult mouse tissues. Cluster analysis placed many GPCRs into anticipated anatomical and functional groups and predicted previously unidentified roles for less-studied receptors. From one such prediction, we showed that the Gpr91 ligand succinate can regulate lipolysis in white adipose tissue, suggesting that signaling by this citric acid cycle intermediate may regulate energy homeostasis. We also showed that pairwise analysis of GPCR expression across tissues may help predict drug side effects. This resource will aid studies to understand GPCR function in vivo and may assist in the identification of therapeutic targets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              β-Arrestins and Cell Signaling

              Upon their discovery, beta-arrestins 1 and 2 were named for their capacity to sterically hinder the G protein coupling of agonist-activated seven-transmembrane receptors, ultimately resulting in receptor desensitization. Surprisingly, recent evidence shows that beta-arrestins can also function to activate signaling cascades independently of G protein activation. By serving as multiprotein scaffolds, the beta-arrestins bring elements of specific signaling pathways into close proximity. beta-Arrestin regulation has been demonstrated for an ever-increasing number of signaling molecules, including the mitogen-activated protein kinases ERK, JNK, and p38 as well as Akt, PI3 kinase, and RhoA. In addition, investigators are discovering new roles for beta-arrestins in nuclear functions. Here, we review the signaling capacities of these versatile adapter molecules and discuss the possible implications for cellular processes such as chemotaxis and apoptosis.
                Bookmark

                Author and article information

                Journal
                Science Signaling
                Sci. Signal.
                American Association for the Advancement of Science (AAAS)
                1945-0877
                1937-9145
                February 20 2018
                February 20 2018
                February 20 2018
                February 20 2018
                : 11
                : 518
                : eaan3714
                Article
                10.1126/scisignal.aan3714
                29463778
                927e9ae9-fab9-41fd-9d35-77cc3eb09772
                © 2018

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article