99
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Novel Role of Dma1 in Regulating Forespore Membrane Assembly and Sporulation in Fission Yeast

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          By characterizing the fission yeast Dma1's function during meiosis, we revealed that Dma1 is required for spore formation, while it is dispensable for fidelity of nuclear divisions. We also found that Dma1 is functionally related to SIN pathway and meiosis-specific kinase Slk1 during sporulation.

          Abstract

          In fission yeast Schizosaccharomyces pombe, a diploid mother cell differentiates into an ascus containing four haploid ascospores following meiotic nuclear divisions, through a process called sporulation. Several meiosis-specific proteins of fission yeast have been identified to play essential roles in meiotic progression and sporulation. We report here an unexpected function of mitotic spindle checkpoint protein Dma1 in proper spore formation. Consistent with its function in sporulation, expression of dma1 + is up-regulated during meiosis I and II. We showed that Dma1 localizes to the SPB during meiosis and the maintenance of this localization at meiosis II depends on septation initiation network (SIN) scaffold proteins Sid4 and Cdc11. Cells lacking Dma1 display defects associated with sporulation but not nuclear division, leading frequently to formation of asci with fewer spores. Our genetic analyses support the notion that Dma1 functions in parallel with the meiosis-specific Sid2-related protein kinase Slk1/Mug27 and the SIN signaling during sporulation, possibly through regulating proper forespore membrane assembly. Our studies therefore revealed a novel function of Dma1 in regulating sporulation in fission yeast.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          The transcriptional program of meiosis and sporulation in fission yeast.

          Sexual reproduction requires meiosis to produce haploid gametes, which in turn can fuse to regenerate a diploid organism. We have studied the transcriptional program that drives this developmental process in Schizosaccharomyces pombe using DNA microarrays. Here we show that hundreds of genes are regulated in successive waves of transcription that correlate with major biological events of meiosis and sporulation. Each wave is associated with specific promoter motifs. Clusters of neighboring genes (mostly close to telomeres) are co-expressed early in the process, which reflects a more global control of these genes. We find that two Atf-like transcription factors are essential for the expression of late genes and formation of spores, and identify dozens of potential Atf target genes. Comparison with the meiotic program of the distantly related Saccharomyces cerevisiae reveals an unexpectedly small shared meiotic transcriptome, suggesting that the transcriptional regulation of meiosis evolved independently in both species.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The product of the spindle formation gene sad1+ associates with the fission yeast spindle pole body and is essential for viability

            Spindle formation in fission yeast occurs by the interdigitation of two microtubule arrays extending from duplicated spindle pole bodies which span the nuclear membrane. By screening a bank of temperature-sensitive mutants by anti-tubulin immunofluorescence microscopy, we previously identified the sad1.1 mutation (Hagan, I., and M. Yanagida. 1990. Nature (Lond.). 347:563-566). Here we describe the isolation and characterization of the sad1+ gene. We show that the sad1.1 mutation affected both spindle formation and function. The sad1+ gene is a novel essential gene that encodes a protein with a predicted molecular mass of 58 kD. Deletion of the gene was lethal resulting in identical phenotypes to the sad1.1 mutation. Sequence analysis predicted a potential membrane-spanning domain and an acidic amino terminus. Sad1 protein migrated as two bands of 82 and 84 kD on SDS-PAGE, considerably slower than its predicted mobility, and was exclusively associated with the spindle pole body (SPB) throughout the mitotic and meiotic cycles. Microtubule integrity was not required for Sad1 association with the SPB. Upon the differentiation of the SPB in metaphase of meiosis II, Sad1-staining patterns similarly changed from a dot to a crescent supporting an integral role in SPB function. Moderate overexpression of Sad1 led to association with the nuclear periphery. As Sad1 was not detected in the cytoplasmic microtubule-organizing centers activated at the end of anaphase or kinetochores, we suggest that Sad1 is not a general component of microtubule-interacting structures per se, but is an essential mitotic component that associates with the SPB but is not required for microtubule nucleation. Sad1 may play a role in SPB structure, such as maintaining a functional interface with the nuclear membrane or in providing an anchor for the attachment of microtubule motor proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An overview of the fission yeast septation initiation network (SIN).

              The fission yeast septation initiation network, or SIN, is a signal transduction network that is required for septum formation in Schizosaccharomyces pombe. Its activity is tightly regulated through the cell cycle, to ensure proper co-ordination of mitosis and cytokinesis. SIN signalling requires three protein kinases for its function and is mediated by a ras-superfamily GTPase. We discuss the elements of the SIN and how they are regulated.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                mbc
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                15 December 2010
                : 21
                : 24
                : 4349-4360
                Affiliations
                [1]Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, China
                Author notes
                Address correspondence to: Quan-wen Jin ( jinquanwen@ 123456xmu.edu.cn ).

                * Z.Y. and P.M. contributed equally to this work.

                Article
                3655028
                10.1091/mbc.E10-01-0079
                3002388
                20980623
                9285a1a3-4d75-4799-ba96-52483c85651e
                © 2010 by The American Society for Cell Biology

                This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                History
                : 1 February 2010
                : 13 October 2010
                : 19 October 2010
                Categories
                Articles
                Cell Cycle

                Molecular biology
                Molecular biology

                Comments

                Comment on this article