17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Smc5/6-mediated regulation of replication progression contributes to chromosome assembly during mitosis in human cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Smc5/6 complex plays a critical role in processing DNA replication and is indispensable for sister chromatid assembly and faithful segregation in mitosis.

          Abstract

          The structural maintenance of chromosomes (SMC) proteins constitute the core of critical complexes involved in structural organization of chromosomes. In yeast, the Smc5/6 complex is known to mediate repair of DNA breaks and replication of repetitive genomic regions, including ribosomal DNA loci and telomeres. In mammalian cells, which have diverse genome structure and scale from yeast, the Smc5/6 complex has also been implicated in DNA damage response, but its further function in unchallenged conditions remains elusive. In this study, we addressed the behavior and function of Smc5/6 during the cell cycle. Chromatin fractionation, immunofluorescence, and live-cell imaging analyses indicated that Smc5/6 associates with chromatin during interphase but largely dissociates from chromosomes when they condense in mitosis. Depletion of Smc5 and Smc6 resulted in aberrant mitotic chromosome phenotypes that were accompanied by the abnormal distribution of topoisomerase IIα (topo IIα) and condensins and by chromosome segregation errors. Importantly, interphase chromatin structure indicated by the premature chromosome condensation assay suggested that Smc5/6 is required for the on-time progression of DNA replication and subsequent binding of topo IIα on replicated chromatids. These results indicate an essential role of the Smc5/6 complex in processing DNA replication, which becomes indispensable for proper sister chromatid assembly in mitosis.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Cohesin mediates transcriptional insulation by CCCTC-binding factor.

          Cohesin complexes mediate sister-chromatid cohesion in dividing cells but may also contribute to gene regulation in postmitotic cells. How cohesin regulates gene expression is not known. Here we describe cohesin-binding sites in the human genome and show that most of these are associated with the CCCTC-binding factor (CTCF), a zinc-finger protein required for transcriptional insulation. CTCF is dispensable for cohesin loading onto DNA, but is needed to enrich cohesin at specific binding sites. Cohesin enables CTCF to insulate promoters from distant enhancers and controls transcription at the H19/IGF2 (insulin-like growth factor 2) locus. This role of cohesin seems to be independent of its role in cohesion. We propose that cohesin functions as a transcriptional insulator, and speculate that subtle deficiencies in this function contribute to 'cohesinopathies' such as Cornelia de Lange syndrome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1.

            Cohesion between sister chromatids is established during DNA replication and depends on a multiprotein complex called cohesin. Attachment of sister kinetochores to the mitotic spindle during mitosis generates forces that would immediately split sister chromatids were it not opposed by cohesion. Cohesion is essential for the alignment of chromosomes in metaphase but must be abolished for sister separation to start during anaphase. In the budding yeast Saccharomyces cerevisiae, loss of sister-chromatid cohesion depends on a separating protein (separin) called Esp1 and is accompanied by dissociation from the chromosomes of the cohesion subunit Scc1. Here we show that Esp1 causes the dissociation of Scc1 from chromosomes by stimulating its cleavage by proteolysis. A mutant Scc1 is described that is resistant to Esp1-dependent cleavage and which blocks both sister-chromatid separation and the dissociation of Scc1 from chromosomes. The evolutionary conservation of separins indicates that the proteolytic cleavage of cohesion proteins might be a general mechanism for triggering anaphase.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast.

              In eukaryotic cells, replicated DNA strands remain physically connected until their segregation to opposite poles of the cell during anaphase. This "sister chromatid cohesion" is essential for the alignment of chromosomes on the mitotic spindle during metaphase. Cohesion depends on the multisubunit cohesin complex, which possibly forms the physical bridges connecting sisters. Proteolytic cleavage of cohesin's Sccl subunit at the metaphase to anaphase transition is essential for sister chromatid separation and depends on a conserved protein called separin. We show here that separin is a cysteine protease related to caspases that alone can cleave Sccl in vitro. Cleavage of Sccl in metaphase arrested cells is sufficient to trigger the separation of sister chromatids and their segregation to opposite cell poles.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                Mol. Biol. Cell
                molbiolcell
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                15 January 2014
                : 25
                : 2
                : 302-317
                Affiliations
                [1] aResearch Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113–0032, Japan
                [2] bDepartment of Biological Sciences, Tokyo Institute of Technology, Yokohama 226–8501, Japan
                [3] dBio-Frontier Research Center, Tokyo Institute of Technology, Yokohama 226–8501, Japan
                [4] cCancer Institute, Japanese Foundation for Cancer Research, Tokyo 135–8550, Japan
                [5] eCore Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo 102–0076, Japan
                National Institutes of Health
                Author notes
                1Address correspondence to: Katsuhiko Shirahige ( kshirahi@ 123456iam.u-tokyo.ac.jp ) or Toru Hirota ( thirota@ 123456jfcr.or.jp ).
                Article
                E13-01-0020
                10.1091/mbc.E13-01-0020
                3890350
                24258023
                a5dc41a8-e586-46f9-b1a8-1de08588ffb9
                © 2014 Gallego-Paez et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( http://creativecommons.org/licenses/by-nc-sa/3.0).

                “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology.

                History
                : 09 January 2013
                : 05 November 2013
                : 13 November 2013
                Categories
                Articles
                Nuclear Functions

                Molecular biology
                Molecular biology

                Comments

                Comment on this article