30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Type I Interferons Keep Activated T Cells Alive

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antigen injection into animals causes antigen-specific T cells to become activated and, rapidly thereafter, die. This antigen-induced death is inhibited by inflammation. To find out how inflammation has this effect, various cytokines were tested for their ability to interfere with the rapid death of activated T cells. T cells were activated in vivo, isolated, and cultured with the test reagents. Two groups of cytokines were active, members of the interleukin 2 family and the interferons (IFNs) α and β. This activity of IFN-α/β has not been described previously. It was due to direct effects of the IFNs on the T cells and was not mediated by induction of a second cytokine such as interleukin 15. IFN-γ did not slow the death of activated T cells, and therefore the activity of IFN-α/β was not mediated only by activation of Stat 1, a protein that is affected by both classes of IFN. IFN-α/β did not raise the levels of Bcl-2 or Bcl- XL in T cells. Therefore, their activity was distinct from that of members of the interleukin 2 family or CD28 engagement. Since IFN-α/β are very efficiently generated in response to viral and bacterial infections, these molecules may be among the signals that the immune system uses to prevent activated T cell death during infections.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15.

          Proliferation of memory-phenotype (CD44hi) CD8+ cells induced by infectious agents can be mimicked by injection of type I interferon (IFN I) and by IFN I-inducing agents such as lipopolysaccharide and Poly I:C; such proliferation does not affect naive T cells and appears to be TCR independent. Since IFN I inhibits proliferation in vitro, IFN I-induced proliferation of CD8+ cells in vivo presumably occurs indirectly through production of secondary cytokines, e.g., interleukin-2 (IL-2) or IL-15. We show here that, unlike IL-2, IL-15 closely mimics the effects of IFN I in causing strong and selective stimulation of memory-phenotype CD44hi CD8+ (but not CD4+) cells in vivo; similar specificity applies to purified T cells in vitro and correlates with much higher expression of IL-2Rbeta on CD8+ cells than on CD4+ cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair.

            bcl-2-/-mice complete embryonic development, but display growth retardation and early mortality postnatally. Hematopoiesis including lymphocyte differentiation is initially normal, but thymus and spleen undergo massive apoptotic involution. Thymocytes require an apoptotic signal to manifest accelerated cell death. Renal failure results from severe polycystic kidney disease characterized by dilated proximal and distal tubular segments and hyperproliferation of epithelium and interstitium. bcl-2-/-mice turn gray with the second hair follicle cycle, implicating a defect in redox-regulated melanin synthesis. The abnormalities in these loss of function mice argue that Bcl-2 is a death repressor molecule functioning in an antioxidant pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Induction of bystander T cell proliferation by viruses and type I interferon in vivo.

              T cell proliferation in vivo is presumed to reflect a T cell receptor (TCR)-mediated polyclonal response directed to various environmental antigens. However, the massive proliferation of T cells seen in viral infections is suggestive of a bystander reaction driven by cytokines instead of the TCR. In mice, T cell proliferation in viral infections preferentially affected the CD44hi subset of CD8+ cells and was mimicked by injection of polyinosinic-polycytidylic acid [poly(I:C)], an inducer of type I interferon (IFN I), and also by purified IFN I; such proliferation was not associated with up-regulation of CD69 or CD25 expression, which implies that TCR signaling was not involved. IFN I [poly(I:C)]-stimulated CD8+ cells survived for prolonged periods in vivo and displayed the same phenotype as did long-lived antigen-specific CD8+ cells. IFN I also potentiated the clonal expansion and survival of CD8+ cells responding to specific antigen. Production of IFN I may thus play an important role in the generation and maintenance of specific memory.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                1 February 1999
                : 189
                : 3
                : 521-530
                Affiliations
                From the [* ]Howard Hughes Medical Institute, Department of Medicine, National Jewish Medical and Research Center, Denver, Colorado 80206; and the []Department of Biochemistry Biophysics and Genetics, the [§ ]Department of Immunology, the []Department of Pharmacology, and the []Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262
                Author notes

                Address correspondence to Philippa Marrack, Howard Hughes Medical Institute, National Jewish Medical and Research Center, Goodman Bldg., 5th Floor, 1400 Jackson St., Denver, CO 80206. Phone: 303-398-1322; Fax: 303-398-1396; E-mail: marrackp@ 123456njc.org

                Article
                10.1084/jem.189.3.521
                2192920
                9927514
                931be463-2f10-485f-bedc-620bc89745d6
                Copyright @ 1999
                History
                : 17 August 1998
                : 14 October 1998
                Categories
                Articles

                Medicine
                interferon γ,apoptosis,interferon type i,cell survival,t cell
                Medicine
                interferon γ, apoptosis, interferon type i, cell survival, t cell

                Comments

                Comment on this article