131
views
0
recommends
+1 Recommend
0 collections
    24
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Functional analysis of Candida albicans GPI-anchored proteins: Roles in cell wall integrity and caspofungin sensitivity

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The outer layer of the Candida albicans cell wall is enriched in highly glycosylated proteins. The major class, the GlycosylPhosphatidylInositol (GPI)-anchored proteins are tethered to the wall by GPI-anchor remnants and include adhesins, glycosyltransferases, yapsins and superoxide dismutases. In silico analysis suggested that C. albicans possesses 115 putative GPI anchored proteins (GpiPs), almost twice the number reported for Saccharomyces cerevisiae. A global approach to characterise in silico predicted GpiPs has been initiated by generating a library of 45 mutants. This library was subjected to a screen for cell wall modifications by testing the cell wall integrity (SDS and Calcofluor White sensitivity) and response to caspofungin. We showed that, when caspofungin sensitivity was modified, in more than half of the cases the susceptibility can be correlated to the level of chitin and cell wall thickness: sensitive strains have low level of chitin and a thin cell wall. We also identified, for the first time, genes that when deleted lead to decreased caspofungin sensitivity: DFG5, PHR1, PGA4 and PGA62. The role of two unknown GpiPs, Pga31 and Pga62 in the cell wall structure and composition was clearly demonstrated during this study.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Cell wall integrity signaling in Saccharomyces cerevisiae.

          The yeast cell wall is a highly dynamic structure that is responsible for protecting the cell from rapid changes in external osmotic potential. The wall is also critical for cell expansion during growth and morphogenesis. This review discusses recent advances in understanding the various signal transduction pathways that allow cells to monitor the state of the cell wall and respond to environmental challenges to this structure. The cell wall integrity signaling pathway controlled by the small G-protein Rho1 is principally responsible for orchestrating changes to the cell wall periodically through the cell cycle and in response to various forms of cell wall stress. This signaling pathway acts through direct control of wall biosynthetic enzymes, transcriptional regulation of cell wall-related genes, and polarization of the actin cytoskeleton. However, additional signaling pathways interface both with the cell wall integrity signaling pathway and with the actin cytoskeleton to coordinate polarized secretion with cell wall expansion. These include Ca(2+) signaling, phosphatidylinositide signaling at the plasma membrane, sphingoid base signaling through the Pkh1 and -2 protein kinases, Tor kinase signaling, and pathways controlled by the Rho3, Rho4, and Cdc42 G-proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isogenic strain construction and gene mapping in Candida albicans.

            Genetic manipulation of Candida albicans is constrained by its diploid genome and asexual life cycle. Recessive mutations are not expressed when heterozygous and undesired mutations introduced in the course of random mutagenesis cannot be removed by genetic back-crossing. To circumvent these problems, we developed a genotypic screen that permitted identification of a heterozygous recessive mutation at the URA3 locus. The mutation was introduced by targeted mutagenesis, homologous integration of transforming DNA, to avoid introduction of extraneous mutations. The ura3 mutation was rendered homozygous by a second round of transformation resulting in a Ura- strain otherwise isogenic with the parental clinical isolate. Subsequent mutation of the Ura- strain was achieved by targeted mutagenesis using the URA3 gene as a selectable marker. URA3 selection was used repeatedly for the sequential introduction of mutations by flanking the URA3 gene with direct repeats of the Salmonella typhimurium hisG gene. Spontaneous intrachromosomal recombination between the flanking repeats excised the URA3 gene restoring a Ura- phenotype. These Ura- segregants were selected on 5-fluoroorotic acid-containing medium and used in the next round of mutagenesis. To permit the physical mapping of disrupted genes, the 18-bp recognition sequence of the endonuclease I-SceI was incorporated into the hisG repeats. Site-specific cleavage of the chromosome with I-SceI revealed the position of the integrated sequences.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Virulence factors of Candida albicans

              Candidiasis is a common infection of the skin, oral cavity and esophagus, gastrointestinal tract, vagina and vascular system of humans. Although most infections occur in patients who are immunocompromised or debilitated in some other way, the organism most often responsible for disease, Candida albicans, expresses several virulence factors that contribute to pathogenesis. These factors include host recognition biomolecules (adhesins), morphogenesis (the reversible transition between unicellular yeast cells and filamentous, growth forms), secreted aspartyl proteases and phospholipases. Additionally, 'phenotypic switching' is accompanied by changes in antigen expression, colony morphology and tissue affinities in C. albicans and several other Candida spp. Switching might provide cells with a flexibility that results in the adaptation of the organism to the hostile conditions imposed not only by the host but also by the physician treating the infection.
                Bookmark

                Author and article information

                Journal
                Fungal Genet Biol
                Fungal Genet. Biol
                Fungal Genetics and Biology
                Academic Press
                1087-1845
                1096-0937
                October 2008
                October 2008
                : 45
                : 10-2
                : 1404-1414
                Affiliations
                [a ]Laboratoire de Microbiologie et Génétique Moléculaire, AgroParisTech, UMR-INRA 1238, UMR-CNRS 2585, 78850 Thiverval-Grignon, France
                [b ]School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
                Author notes
                [* ]Corresponding author. Fax: +33 1 30815457. mathias.lavie-richard@ 123456grignon.inra.fr
                Article
                YFGBI2031
                10.1016/j.fgb.2008.08.003
                2649418
                18765290
                93511a40-a086-44a0-87bc-980d420a310b
                © 2008 Elsevier Inc.

                This document may be redistributed and reused, subject to certain conditions.

                History
                : 21 March 2008
                : 10 August 2008
                Categories
                Article

                Plant science & Botany
                cell wall,gpi,calcofluor,candida albicans,surface
                Plant science & Botany
                cell wall, gpi, calcofluor, candida albicans, surface

                Comments

                Comment on this article