48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Urinary Concentrations of Four Parabens in the U.S. Population: NHANES 2005–2006

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Parabens are widely used as antimicrobial preservatives in cosmetics, pharmaceuticals, and food and beverage processing.

          Objectives

          We assessed exposure to methyl, ethyl, propyl, and butyl parabens in a representative sample of persons ≥ 6 years of age in the U.S. general population from the 2005–2006 National Health and Nutrition Examination Survey.

          Methods

          We analyzed 2,548 urine samples by using online solid-phase extraction coupled to isotope dilution–high-performance liquid chromatography/tandem mass spectrometry.

          Results

          We detected methyl paraben (MP) and propyl paraben (PP) in 99.1% and 92.7% of the samples, respectively. We detected ethyl (42.4%) and butyl (47%) parabens less frequently and at median concentrations at least one order of magnitude lower than MP (63.5 μg/L) and PP (8.7 μg/L). Least-square geometric mean (LSGM) concentrations of MP were significantly higher ( p ≤ 0.01) among non-Hispanic blacks than among non-Hispanic whites except at older ages (≥ 60 years). Adolescent and adult females had significantly higher ( p < 0.01) LSGM concentrations of MP and PP than did adolescent and adult males. Females were more likely than males [adjusted odds ratios (ORs) and 95% confidence intervals (CIs): MP, 3.2 (2.99–5.27); PP, 4.19 (2.34–7.49)] and non-Hispanic blacks were more likely than non-Hispanic whites [MP, 4.99 (2.62–9.50); PP, 3.6 (1.86–7.05)] to have concentrations above the 95th percentile.

          Conclusions

          The general U.S. population was exposed to several parabens during 2005–2006. Differences in the urinary concentrations of MP and PP by sex and race/ethnicity likely reflect the use of personal care products containing these compounds.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999-2000.

          We measured the urinary monoester metabolites of seven commonly used phthalates in approximately 2,540 samples collected from participants of the National Health and Nutrition Examination Survey (NHANES), 1999-2000, who were greater than or equal to 6 years of age. We found detectable levels of metabolites monoethyl phthalate (MEP), monobutyl phthalate (MBP), monobenzyl phthalate (MBzP), and mono-(2-ethylhexyl) phthalate (MEHP) in > 75% of the samples, suggesting widespread exposure in the United States to diethyl phthalate, dibutyl phthalate or diisobutylphthalate, benzylbutyl phthalate, and di-(2-ethylhexyl) phthalate, respectively. We infrequently detected monoisononyl phthalate, mono-cyclohexyl phthalate, and mono-n-octyl phthalate, suggesting that human exposures to di-isononyl phthalate, dioctylphthalate, and dicyclohexyl phthalate, respectively, are lower than those listed above, or the pathways, routes of exposure, or pharmacokinetic factors such as absorption, distribution, metabolism, and elimination are different. Non-Hispanic blacks had significantly higher concentrations of MEP than did Mexican Americans and non-Hispanic whites. Compared with adolescents and adults, children had significantly higher levels of MBP, MBzP, and MEHP but had significantly lower concentrations of MEP. Females had significantly higher concentrations of MEP and MBzP than did males, but similar MEHP levels. Of particular interest, females of all ages had significantly higher concentrations of the reproductive toxicant MBP than did males of all ages; however, women of reproductive age (i.e., 20-39 years of age) had concentrations similar to adolescent girls and women 40 years of age. These population data on exposure to phthalates will serve an important role in public health by helping to set research priorities and by establishing a nationally representative baseline of exposure with which population levels can be compared.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Safety assessment of esters of p-hydroxybenzoic acid (parabens).

            Parabens are widely used as preservatives in food, cosmetic and pharmaceutical products. Acute, subchronic, and chronic studies in rodents indicate that parabens are practically non-toxic. Parabens are rapidly absorbed, metabolized, and excreted. In individuals with normal skin, parabens are, for the most part, non-irritating and non-sensitizing. However, application of compounds containing parabens to damaged or broken skin has resulted in sensitization. Genotoxicity testing of parabens in a variety of in vitro and in vivo studies primarily gave negative results. The paraben structure is not indicative of carcinogenic potential, and experimental studies support these observations. Some animal studies have reported adverse reproductive effects of parabens. In an uterotrophic assay, methyl and butyl paraben administered orally to immature rats were inactive, while subcutaneous administration of butyl paraben produced a weak positive response. The ability of parabens to transactivate the estrogen receptor in vitro increases with alkyl group size. The detection of parabens in a small number of breast tumor tissue samples and adverse reproductive effects of parabens in animals has provoked controversy over the continued use of these substances. However, the possible estrogenic hazard of parabens on the basis of the available studies is equivocal, and fails to consider the metabolism and elimination rates of parabens, which are dose, route, and species dependent. In light of the recent controversy over the estrogenic potential of parabens, conduct of a reproductive toxicity study may be warranted.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Paraben esters: review of recent studies of endocrine toxicity, absorption, esterase and human exposure, and discussion of potential human health risks.

              This toxicology update reviews research over the past four years since publication in 2004 of the first measurement of intact esters of p-hydroxybenzoic acid (parabens) in human breast cancer tissues, and the suggestion that their presence in the human body might originate from topical application of bodycare cosmetics. The presence of intact paraben esters in human body tissues has now been confirmed by independent measurements in human urine, and the ability of parabens to penetrate human skin intact without breakdown by esterases and to be absorbed systemically has been demonstrated through studies not only in vitro but also in vivo using healthy human subjects. Using a wide variety of assay systems in vitro and in vivo, the oestrogen agonist properties of parabens together with their common metabolite (p-hydroxybenzoic acid) have been extensively documented, and, in addition, the parabens have now also been shown to possess androgen antagonist activity, to act as inhibitors of sulfotransferase enzymes and to possess genotoxic activity. With the continued use of parabens in the majority of bodycare cosmetics, there is a need to carry out detailed evaluation of the potential for parabens, together with other oestrogenic and genotoxic co-formulants of bodycare cosmetics, to increase female breast cancer incidence, to interfere with male reproductive functions and to influence development of malignant melanoma which has also recently been shown to be influenced by oestrogenic stimulation. 2008 John Wiley & Sons, Ltd
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                1552-9924
                May 2010
                4 January 2010
                : 118
                : 5
                : 679-685
                Affiliations
                Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
                Author notes
                Address correspondence to A.M. Calafat, Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, 4770 Buford Hwy., NE, Mailstop F53, Atlanta, GA 30341 USA. Telephone: (770) 488-7891. Fax: (770) 488-4609. E-mail: Acalafat@ 123456cdc.gov

                The authors declare they have no actual or potential competing financial interests.

                Article
                ehp-118-679
                10.1289/ehp.0901560
                2866685
                20056562
                9380d1c8-275e-40ae-a9d3-f379da174966
                This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original DOI.
                History
                : 9 October 2009
                : 4 January 2010
                Categories
                Research

                Public health
                nhanes,human,p-hydroxybenzoic acid esters,urine,biomonitoring,exposure
                Public health
                nhanes, human, p-hydroxybenzoic acid esters, urine, biomonitoring, exposure

                Comments

                Comment on this article