34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mesenchymal stem cells promote alveolar epithelial cell wound repair in vitro through distinct migratory and paracrine mechanisms

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Mesenchymal stem cells (MSC) are in clinical trials for widespread indications including musculoskeletal, neurological, cardiac and haematological disorders. Furthermore, MSC can ameliorate pulmonary fibrosis in animal models although mechanisms of action remain unclear. One emerging concept is that MSCs may have paracrine, rather than a functional, roles in lung injury repair and regeneration.

          Methods

          To investigate the paracrine role of human MSC (hMSC) on pulmonary epithelial repair, hMSC-conditioned media (CM) and a selected cohort of hMSC-secretory proteins (identified by LC-MS/MS mass spectrometry) were tested on human type II alveolar epithelial cell line A549 cells (AEC) and primary human small airway epithelial cells (SAEC) using an in vitro scratch wound repair model. A 3D direct-contact wound repair model was further developed to assess the migratory properties of hMSC.

          Results

          We demonstrate that MSC-CM facilitates AEC and SAEC wound repair in serum-dependent and –independent manners respectively via stimulation of cell migration. We also show that the hMSC secretome contains an array of proteins including Fibronectin, Lumican, Periostin, and IGFBP-7; each capable of influencing AEC and SAEC migration and wound repair stimulation. In addition, hMSC also show a strong migratory response to AEC injury as, supported by the observation of rapid and effective AEC wound gap closure by hMSC in the 3D model.

          Conclusion

          These findings support the notion for clinical application of hMSCs and/or their secretory factors as a pharmacoregenerative modality for the treatment of idiopathic pulmonary fibrosis (IPF) and other fibrotic lung disorders.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy.

          Idiopathic pulmonary fibrosis is a progressive and usually fatal lung disease characterized by fibroblast proliferation and extracellular matrix remodeling, which result in irreversible distortion of the lung's architecture. Although the pathogenetic mechanisms remain to be determined, the prevailing hypothesis holds that fibrosis is preceded and provoked by a chronic inflammatory process that injures the lung and modulates lung fibrogenesis, leading to the end-stage fibrotic scar. However, there is little evidence that inflammation is prominent in early disease, and it is unclear whether inflammation is relevant to the development of the fibrotic process. Evidence suggests that inflammation does not play a pivotal role. Inflammation is not a prominent histopathologic finding, and epithelial injury in the absence of ongoing inflammation is sufficient to stimulate the development of fibrosis. In addition, the inflammatory response to a lung fibrogenic insult is not necessarily related to the fibrotic response. Clinical measurements of inflammation fail to correlate with stage or outcome, and potent anti-inflammatory therapy does not improve outcome. This review presents a growing body of evidence suggesting that idiopathic pulmonary fibrosis involves abnormal wound healing in response to multiple, microscopic sites of ongoing alveolar epithelial injury and activation associated with the formation of patchy fibroblast-myofibroblast foci, which evolve to fibrosis. Progress in understanding the fibrogenic mechanisms in the lung is likely to yield more effective therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep.

            Mesenchymal stem cells are multipotent cells that can be isolated from adult bone marrow and can be induced in vitro and in vivo to differentiate into a variety of mesenchymal tissues, including bone, cartilage, tendon, fat, bone marrow stroma, and muscle. Despite their potential clinical utility for cellular and gene therapy, the fate of mesenchymal stem cells after systemic administration is mostly unknown. To address this, we transplanted a well-characterized human mesenchymal stem cell population into fetal sheep early in gestation, before and after the expected development of immunologic competence. In this xenogeneic system, human mesenchymal stem cells engrafted and persisted in multiple tissues for as long as 13 months after transplantation. Transplanted human cells underwent site-specific differentiation into chondrocytes, adipocytes, myocytes and cardiomyocytes, bone marrow stromal cells and thymic stroma. Unexpectedly, there was long-term engraftment even when cells were transplanted after the expected development of immunocompetence. Thus, mesenchymal stem cells maintain their multipotential capacity after transplantation, and seem to have unique immunologic characteristics that allow persistence in a xenogeneic environment. Our data support the possibility of the transplantability of mesenchymal stem cells and their potential utility in tissue engineering, and cellular and gene therapy applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential.

              We report here the isolation of a population of non-transformed pluripotent human cells from bone marrow after a unique expansion/selection procedure. This procedure was designed to provide conditions resembling the in vivo microenvironment that is home for the most-primitive stem cells. Marrow-adherent and -nonadherent cells were co-cultured on fibronectin, at low oxygen tension, for 14 days. Colonies of small adherent cells were isolated and further expanded on fibronectin at low density, low oxygen tension with 2% fetal bovine serum. They expressed high levels of CD29, CD63, CD81, CD122, CD164, hepatocyte growth factor receptor (cMet), bone morphogenetic protein receptor 1B (BMPR1B), and neurotrophic tyrosine kinase receptor 3 (NTRK3) and were negative for CD34, CD36, CD45, CD117 (cKit) and HLADR. The embryonic stem cell markers Oct-4 and Rex-1, and telomerase were expressed in all cultures examined. Cell-doubling time was 36 to 72 hours, and cells have been expanded in culture for more than 50 population doublings. This population of cells was consistently isolated from men and women of ages ranging from 3- to 72-years old. Colonies of cells expressed numerous markers found among embryonic stem cells as well as mesodermal-, endodermal- and ectodermal-derived lineages. They have been differentiated to bone-forming osteoblasts, cartilage-forming chondrocytes, fat-forming adipocytes and neural cells and to attachment-independent spherical clusters expressing genes associated with pancreatic islets. Based on their unique characteristics and properties, we refer to them as human marrow-isolated adult multilineage inducible cells, or MIAMI cells. MIAMI cells proliferate extensively without evidence of senescence or loss of differentiation potential and thus may represent an ideal candidate for cellular therapies of inherited or degenerative diseases.
                Bookmark

                Author and article information

                Journal
                Respir Res
                Respir. Res
                Respiratory Research
                BioMed Central
                1465-9921
                1465-993X
                2013
                25 January 2013
                : 14
                : 1
                : 9
                Affiliations
                [1 ]Institute for Science and Technology in Medicine, School of Postgraduate Medicine, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK
                [2 ]Department of Respiratory Medicine, University Hospital of North Staffordshire, Stoke-on-Trent, Staffordshire ST4 6QG, UK
                Article
                1465-9921-14-9
                10.1186/1465-9921-14-9
                3598763
                23350749
                93d713f4-e653-4524-9827-e3c1a17d5add
                Copyright ©2013 Akram et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 September 2012
                : 22 January 2013
                Categories
                Research

                Respiratory medicine
                mesenchymal stem cells,idiopathic pulmonary fibrosis,alveolar epithelial wound repair,msc secretory proteins.

                Comments

                Comment on this article