0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The SEB1741 Aptamer Is an Efficient Tool for Blocking CD4+ T Cell Activation Induced by Staphylococcal Enterotoxin B

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Staphylococcal enterotoxin B (SEB) is a protein produced by Staphylococcus aureus, which is toxic to humans. It is well known for its ability to stimulate the exacerbated activation of proinflammatory CD4+ T cells (Th1 profile), and in vitro studies have been conducted to understand its mechanism of action and its potential use as an immune therapy. However, the efficiency of the SEB1741 aptamer in blocking SEB has not been experimentally demonstrated. Methods: Enrichment CD4+ T cells were stimulated with SEB, and as a blocker, we used the SEB1741 aptamer, which was previously synthesised by an “in silico” analysis, showing high affinity and specificity to SEB. The efficiency of the SEB1741 aptamer in blocking CD4+ T cell activation was compared with that of an anti-SEB monoclonal antibody. Flow cytometry and Bio-Plex were used to evaluate the T-cell function. Results: In vitro, SEB induced the activation of CD4+ T cells and favoured a Th1 profile; however, the SEB1741 aptamer was highly efficient in decreasing the frequency of CD4+ T cells positive to ki-67 and CD69 cells, this means that proliferation and activation of CD4+ T cells was decreased. Moreover, the production of interleukin 2 (IL-2) and interferon-gamma (IFN-γ) was affected, suggesting that the Th1 profile is not present when the SEB1441 aptamer is used. Thus, the SEB1741 function was similar to that of anti-SEB. Conclusions: The SEB1741 aptamer is a valuable tool for blocking CD4+ T cell activation and the subsequent release of proinflammatory cytokines by SEB stimulation.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          <i>Staphylococcus aureus</i> Infections

          New England Journal of Medicine, 339(8), 520-532
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aptamers as Therapeutics.

            Aptamers are single-stranded nucleic acid molecules that bind to and inhibit proteins and are commonly produced by systematic evolution of ligands by exponential enrichment (SELEX). Aptamers undergo extensive pharmacological revision, which alters affinity, specificity, and therapeutic half-life, tailoring each drug for a specific clinical need. The first therapeutic aptamer was described 25 years ago. Thus far, one aptamer has been approved for clinical use, and numerous others are in preclinical or clinical development. This review presents a short history of aptamers and SELEX, describes their pharmacological development and optimization, and reviews potential treatment of diseases including visual disorders, thrombosis, and cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The bacterial superantigen and superantigen-like proteins.

              The bacterial superantigens are protein toxins that bind to major histocompatibility complex class II and T-cell receptor to stimulate large numbers of T cells. The majority are produced by the Gram-positive organisms Staphylococcus aureus and Streptococcus pyogenes and are the causative agents in toxic shock syndrome, an acute disease caused by the sudden and massive release of T-cell cytokines into the blood stream. The structure and function of the superantigens has revealed a common architecture that is also shared by another group of staphylococcal virulence factors called the superantigen-like proteins (SSL). Together, this family of structurally related molecules highlights how a common pathogenic organism has employed a simple but adaptable protein to generate an armamentarium of potent defense molecules designed to target of the innate and adaptive immune response.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                MOLEFW
                Molecules
                Molecules
                MDPI AG
                1420-3049
                April 2023
                April 14 2023
                : 28
                : 8
                : 3480
                Article
                10.3390/molecules28083480
                10142257
                37110712
                93f35cc1-c50f-4179-af6f-f25e3140c3db
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article