3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MiR-154-5p-MCP1 Axis Regulates Allergic Inflammation by Mediating Cellular Interactions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In a previous study, we have demonstrated that p62, a selective receptor of autophagy, can regulate allergic inflammation. In the present study, microRNA array analysis showed that miR-154-5p was increased by antigen (DNP-HSA) in a p62-dependent manner in rat basophilic leukemia cells (RBL2H3). NF-kB directly increased the expression of miR-154-5p. miR-154-5p mediated in vivo allergic reactions, including passive cutaneous anaphylaxis and passive systemic anaphylaxis. Cytokine array analysis showed that antigen stimulation increased the expression of MCP1 in RBL2H3 cells in an miR-154-5p-dependent manner. Reactive oxygen species (ROS)-ERK-NF-kB signaling increased the expression of MCP1 in antigen-stimulated RBL2H3 cells. Recombinant MCP1 protein induced molecular features of allergic reactions both in vitro and in vivo. Anaphylaxis-promoted tumorigenic potential has been known to be accompanied by cellular interactions involving mast cells, and macrophages, and cancer cells. Our experiments employing culture medium, co-cultures, and recombinant MCP1 protein showed that miR-154 and MCP1 mediated these cellular interactions. MiR-154-5p and MCP1 were found to be present in exosomes of RBL2H3 cells. Exosomes from PSA-activated BALB/C mouse induced molecular features of passive cutaneous anaphylaxis in an miR-154-5p-dependent manner. Exosomes from antigen-stimulated RBL2H3 cells enhanced both tumorigenic and metastatic potentials of B16F1 melanoma cells in an miR-154-5p-dependent manner. Exosomes regulated both ROS level and ROS mediated cellular interactions during allergic inflammation. Our results indicate that the miR-154-5p-MCP1 axis might serve as a valuable target for the development of anti-allergy therapeutics.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease.

          Allergic asthma is an inflammatory disease of the lung characterized by abnormal T helper-2 (T(H)2) lymphocyte responses to inhaled antigens. The molecular mechanisms leading to the generation of T(H)2 responses remain unclear, although toll-like receptors (TLRs) present on innate immune cells play a pivotal role in sensing molecular patterns and in programming adaptive T cell responses. Here we show that in vivo activation of TLR4 by house dust mite antigens leads to the induction of allergic disease, a process that is associated with expression of a unique subset of small, noncoding microRNAs. Selective blockade of microRNA (miR)-126 suppressed the asthmatic phenotype, resulting in diminished T(H)2 responses, inflammation, airways hyperresponsiveness, eosinophil recruitment, and mucus hypersecretion. miR-126 blockade resulted in augmented expression of POU domain class 2 associating factor 1, which activates the transcription factor PU.1 that alters T(H)2 cell function via negative regulation of GATA3 expression. In summary, this study presents a functional connection between miRNA expression and asthma pathogenesis, and our data suggest that targeting miRNA in the airways may lead to anti-inflammatory treatments for allergic asthma.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma

            Mesenchymal stem cells (MSCs) and regulatory T cells (Tregs) are both potent immune-modulators. The aberrant proliferation and function of Tregs plays an important role in the development of asthma. Our previous studies have demonstrated the role of MSCs in promoting proliferation and immune-modulating of Tregs, as well as alleviating airway inflammation of asthmatic mice. In the present study, we isolated exosomes secreted by MSCs and investigated their immunomodulation effect on peripheral blood mononuclear cells (PBMCs) of asthmatic patient. We found that MSC exosomes upregulated IL-10 and TGF-β1 from PBMCs, thus promoting proliferation and immune-suppression capacity of Tregs. Furthermore, antigen presenting cells (APCs) but not CD4+ T cells-dependent pathway was shown to be possible mechanism involved in MSC exosome-mediated regulation. Our data elucidated the key role of exosomes in immune-modulation of MSCs, and suggested the therapeutic potential of MSC exosomes for asthma.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PIKfyve inhibition increases exosome release and induces secretory autophagy.

              Exosomes are vesicles released from cells by fusion of multivesicular bodies (MVBs) with the plasma membrane. This study aimed to investigate whether the phosphoinositide kinase PIKfyve affects this process. Our results show that in PC-3 cells inhibition of PIKfyve by apilimod or depletion by siRNA increased the secretion of the exosomal fraction. Moreover, quantitative electron microscopy analysis showed that cells treated with apilimod contained more MVBs per cell and more intraluminal vesicles per MVB. Interestingly, mass spectrometry analysis revealed a considerable enrichment of autophagy-related proteins (NBR1, p62, LC3, WIPI2) in exosomal fractions released by apilimod-treated cells, a result that was confirmed by immunoblotting. When the exosome preparations were investigated by electron microscopy a small population of p62-labelled electron dense structures was observed together with CD63-containing exosomes. The p62-positive structures were found in less dense fractions than exosomes in density gradients. Inside the cells, p62 and CD63 were found in the same MVB-like organelles. Finally, both the degradation of EGF and long-lived proteins were shown to be reduced by apilimod. In conclusion, inhibition of PIKfyve increases secretion of exosomes and induces secretory autophagy, showing that these pathways are closely linked. We suggest this is due to impaired fusion of lysosomes with both MVBs and autophagosomes, and possibly increased fusion of MVBs with autophagosomes, and that the cells respond by secreting the content of these organelles to maintain cellular homeostasis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                31 May 2021
                2021
                : 12
                : 663726
                Affiliations
                [1] 1 Department of Biochemistry, Kangwon National University , Chuncheon, South Korea
                [2] 2 Chuncheon Center, Korea Basic Science Institute (KBSI) , Chuncheon, South Korea
                [3] 3 Institute of New Frontier Research, College of Medicine, Hallym University , Chuncheon, South Korea
                Author notes

                Edited by: Seyed Mahmoud Hashemi, Shahid Beheshti University of Medical Sciences, Iran

                Reviewed by: Dongqing Li, Karolinska Institutet (KI), Sweden; Kosuke Nishi, Ehime University, Japan

                *Correspondence: Dooil Jeoung, jeoungd@ 123456kangwon.ac.kr

                This article was submitted to Inflammation, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2021.663726
                8201518
                944a3c75-594a-4b40-9a8b-3f4a1f457ed0
                Copyright © 2021 Kim, Jo, Kwon, Jeong, Jung, Kim and Jeoung

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 February 2021
                : 17 May 2021
                Page count
                Figures: 9, Tables: 0, Equations: 0, References: 45, Pages: 13, Words: 6110
                Categories
                Immunology
                Original Research

                Immunology
                mir-154-5p,mcp1,exosomes,cellular interactions,allergic inflammation
                Immunology
                mir-154-5p, mcp1, exosomes, cellular interactions, allergic inflammation

                Comments

                Comment on this article