65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Neto1 Is a Novel CUB-Domain NMDA Receptor–Interacting Protein Required for Synaptic Plasticity and Learning

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The N-methyl-D-aspartate receptor (NMDAR), a major excitatory ligand-gated ion channel in the central nervous system (CNS), is a principal mediator of synaptic plasticity. Here we report that neuropilin tolloid-like 1 (Neto1), a complement C1r/C1s, Uegf, Bmp1 (CUB) domain-containing transmembrane protein, is a novel component of the NMDAR complex critical for maintaining the abundance of NR2A-containing NMDARs in the postsynaptic density. Neto1-null mice have depressed long-term potentiation (LTP) at Schaffer collateral-CA1 synapses, with the subunit dependency of LTP induction switching from the normal predominance of NR2A- to NR2B-NMDARs. NMDAR-dependent spatial learning and memory is depressed in Neto1-null mice, indicating that Neto1 regulates NMDA receptor-dependent synaptic plasticity and cognition. Remarkably, we also found that the deficits in LTP, learning, and memory in Neto1-null mice were rescued by the ampakine CX546 at doses without effect in wild-type. Together, our results establish the principle that auxiliary proteins are required for the normal abundance of NMDAR subunits at synapses, and demonstrate that an inherited learning defect can be rescued pharmacologically, a finding with therapeutic implications for humans.

          Author Summary

          The fundamental unit for information processing in the brain is the synapse, a highly specialized site of communication between the brain's multitude of individual neurons. The strength of the communication at each synapse changes in response to neuronal activity—a process called synaptic plasticity—allowing networks of neurons to adapt and learn. How synaptic plasticity occurs is a major question in neurobiology. A central player in synaptic plasticity is an assembly of synaptic proteins called the NMDA receptor complex. Here, we discovered that the protein Neto1 is a component of the NMDA receptor complex. Neto1-deficient mice had a dramatic decrease in the number of NMDA receptors at synapses and consequently, synaptic plasticity and learning were impaired. By indirectly enhancing the function of the residual NMDA receptors in Neto1-deficient mice with a small molecule, we restored synaptic plasticity and learning to normal levels. Our findings establish the principle that inherited abnormalities of synaptic plasticity and learning due to NMDA receptor dysfunction can be pharmacologically corrected. Our discoveries also suggest that synaptic proteins that share a molecular signature, called the CUB domain, with Neto1 may be important components of synaptic receptors across species, because several CUB-domain proteins in worms have also been found to regulate synaptic receptors.

          Abstract

          Spatial learning and memory depend on the N-methyl-D-aspartic acid receptor, a synaptic ion channel regulated by Neto1. Impaired cognition due to the absence of Neto1 can be rescued pharmacologically, a finding with implications for the therapy of inherited learning defects in humans.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Long-term potentiation and memory.

          M A Lynch (2004)
          One of the most significant challenges in neuroscience is to identify the cellular and molecular processes that underlie learning and memory formation. The past decade has seen remarkable progress in understanding changes that accompany certain forms of acquisition and recall, particularly those forms which require activation of afferent pathways in the hippocampus. This progress can be attributed to a number of factors including well-characterized animal models, well-defined probes for analysis of cell signaling events and changes in gene transcription, and technology which has allowed gene knockout and overexpression in cells and animals. Of the several animal models used in identifying the changes which accompany plasticity in synaptic connections, long-term potentiation (LTP) has received most attention, and although it is not yet clear whether the changes that underlie maintenance of LTP also underlie memory consolidation, significant advances have been made in understanding cell signaling events that contribute to this form of synaptic plasticity. In this review, emphasis is focused on analysis of changes that occur after learning, especially spatial learning, and LTP and the value of assessing these changes in parallel is discussed. The effect of different stressors on spatial learning/memory and LTP is emphasized, and the review concludes with a brief analysis of the contribution of studies, in which transgenic animals were used, to the literature on memory/learning and LTP.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The glutamate receptor ion channels.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic enhancement of learning and memory in mice.

              Hebb's rule (1949) states that learning and memory are based on modifications of synaptic strength among neurons that are simultaneously active. This implies that enhanced synaptic coincidence detection would lead to better learning and memory. If the NMDA (N-methyl-D-aspartate) receptor, a synaptic coincidence detector, acts as a graded switch for memory formation, enhanced signal detection by NMDA receptors should enhance learning and memory. Here we show that overexpression of NMDA receptor 2B (NR2B) in the forebrains of transgenic mice leads to enhanced activation of NMDA receptors, facilitating synaptic potentiation in response to stimulation at 10-100 Hz. These mice exhibit superior ability in learning and memory in various behavioural tasks, showing that NR2B is critical in gating the age-dependent threshold for plasticity and memory formation. NMDA-receptor-dependent modifications of synaptic efficacy, therefore, represent a unifying mechanism for associative learning and memory. Our results suggest that genetic enhancement of mental and cognitive attributes such as intelligence and memory in mammals is feasible.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                plbi
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                February 2009
                24 February 2009
                : 7
                : 2
                : e1000041
                Affiliations
                [1 ] Program in Developmental Biology, The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
                [2 ] Program in Genetics & Genome Biology, The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
                [3 ] Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
                [4 ] Neurosciences & Mental Health, The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
                [5 ] Department of Physiology, University of Toronto, Toronto, Ontario, Canada
                [6 ] Mount Sinai Hospital Research Institute, Toronto, Ontario, Canada
                [7 ] Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
                [8 ] Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
                [9 ] Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
                Mount Sinai School of Medicine, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: mike.salter@ 123456utoronto.ca (MWS); mcinnes@ 123456sickkids.ca (RRM)
                Article
                08-PLBI-RA-1527R3 plbi-07-02-12
                10.1371/journal.pbio.1000041
                2652390
                19243221
                949a1d3a-2ccb-4285-bf10-ab17a29c2f34
                Copyright: © 2009 Ng et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 17 April 2008
                : 12 January 2009
                Page count
                Pages: 1
                Categories
                Research Article
                Genetics and Genomics
                Neurological Disorders
                Neuroscience
                Custom metadata
                Ng D, Pitcher GM, Szilard RK, Sertié A, Kanisek M, et al. (2009) Neto1 is a novel CUB-domain NMDA receptor–interacting protein required for synaptic plasticity and learning. PLoS Biol 7(2): e1000041. doi: 10.1371/journal.pbio.1000041

                Life sciences
                Life sciences

                Comments

                Comment on this article