3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The role of exosomes in central nervous system tissue regeneration and repair

      ,
      Biomedical Materials

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exosomes are membrane-bound vesicles secreted by various cell types into the extracellular environment and contain kinds of bioactive molecules. These molecules can mediate various biological processes such as cell differentiation, proliferation, and survival, making them attractive for tissue regeneration and repair. Owing to their nanoscale size, bilayer membrane structure, and receptor-mediated transcytosis, exosomes can cross the blood-brain barrier (BBB) and reach the central nervous system (CNS) tissue. Additionally, exosomes can be loaded with exogenous substances after isolation. It has been suggested that exosomes could be used as natural drug carriers to transport therapeutic agents across the BBB and have great potential for CNS disease therapy by promoting tissue regeneration and repair. Herein, we discuss perspectives on therapeutic strategies to treat neurodegenerative disease or spinal cord injury using a variety of cell types-derived exosomes with kinds of exosomal contents, as well as engineering strategies of specific functional and exosome administration routes.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          The biology, function, and biomedical applications of exosomes

          The study of extracellular vesicles (EVs) has the potential to identify unknown cellular and molecular mechanisms in intercellular communication and in organ homeostasis and disease. Exosomes, with an average diameter of ~100 nanometers, are a subset of EVs. The biogenesis of exosomes involves their origin in endosomes, and subsequent interactions with other intracellular vesicles and organelles generate the final content of the exosomes. Their diverse constituents include nucleic acids, proteins, lipids, amino acids, and metabolites, which can reflect their cell of origin. In various diseases, exosomes offer a window into altered cellular or tissue states, and their detection in biological fluids potentially offers a multicomponent diagnostic readout. The efficient exchange of cellular components through exosomes can inform their applied use in designing exosome-based therapeutics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.

            Exosomes are vesicles of endocytic origin released by many cells. These vesicles can mediate communication between cells, facilitating processes such as antigen presentation. Here, we show that exosomes from a mouse and a human mast cell line (MC/9 and HMC-1, respectively), as well as primary bone marrow-derived mouse mast cells, contain RNA. Microarray assessments revealed the presence of mRNA from approximately 1300 genes, many of which are not present in the cytoplasm of the donor cell. In vitro translation proved that the exosome mRNAs were functional. Quality control RNA analysis of total RNA derived from exosomes also revealed presence of small RNAs, including microRNAs. The RNA from mast cell exosomes is transferable to other mouse and human mast cells. After transfer of mouse exosomal RNA to human mast cells, new mouse proteins were found in the recipient cells, indicating that transferred exosomal mRNA can be translated after entering another cell. In summary, we show that exosomes contain both mRNA and microRNA, which can be delivered to another cell, and can be functional in this new location. We propose that this RNA is called "exosomal shuttle RNA" (esRNA).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Engineering precision nanoparticles for drug delivery

              In recent years, the development of nanoparticles has expanded into a broad range of clinical applications. Nanoparticles have been developed to overcome the limitations of free therapeutics and navigate biological barriers — systemic, microenvironmental and cellular — that are heterogeneous across patient populations and diseases. Overcoming this patient heterogeneity has also been accomplished through precision therapeutics, in which personalized interventions have enhanced therapeutic efficacy. However, nanoparticle development continues to focus on optimizing delivery platforms with a one-size-fits-all solution. As lipid-based, polymeric and inorganic nanoparticles are engineered in increasingly specified ways, they can begin to be optimized for drug delivery in a more personalized manner, entering the era of precision medicine. In this Review, we discuss advanced nanoparticle designs utilized in both non-personalized and precision applications that could be applied to improve precision therapies. We focus on advances in nanoparticle design that overcome heterogeneous barriers to delivery, arguing that intelligent nanoparticle design can improve efficacy in general delivery applications while enabling tailored designs for precision applications, thereby ultimately improving patient outcome overall.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomedical Materials
                Biomed. Mater.
                1748-6041
                1748-605X
                July 14 2023
                September 01 2023
                July 14 2023
                September 01 2023
                : 18
                : 5
                : 052003
                Article
                10.1088/1748-605X/ace39c
                9511457d-0bdd-495a-b6a3-8408b4fa792f
                © 2023

                https://iopscience.iop.org/page/copyright

                History

                Comments

                Comment on this article