27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Copaifera of the Neotropics: A Review of the Phytochemistry and Pharmacology

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The oleoresin of Copaifera trees has been widely used as a traditional medicine in Neotropical regions for thousands of years and remains a popular treatment for a variety of ailments. The copaiba resins are generally composed of a volatile oil made up largely of sesquiterpene hydrocarbons, such as β-caryophyllene, α-copaene, β-elemene, α-humulene, and germacrene D. In addition, the oleoresin is also made up of several biologically active diterpene acids, including copalic acid, kaurenoic acid, alepterolic acid, and polyalthic acid. This review presents a summary of the ecology and distribution of Copaifera species, the traditional uses, the biological activities, and the phytochemistry of copaiba oleoresins. In addition, several biomolecular targets relevant to the bioactivities have been implicated by molecular docking methods.

          Related collections

          Most cited references112

          • Record: found
          • Abstract: found
          • Article: not found

          Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells.

          Studies have shown that DNA (cytosine-5-)-methyltransferase 1 (DNMT1) is the principal enzyme responsible for maintaining CpG methylation and is required for embryonic development and survival of somatic cells in mice. The role of DNMT1 in human cancer cells, however, remains highly controversial. Using homologous recombination, here we have generated a DNMT1 conditional allele in the human colorectal carcinoma cell line HCT116 in which several exons encoding the catalytic domain are flanked by loxP sites. Cre recombinase-mediated disruption of this allele results in hemimethylation of approximately 20% of CpG-CpG dyads in the genome, coupled with activation of the G2/M checkpoint, leading to arrest in the G2 phase of the cell cycle. Although cells gradually escape from this arrest, they show severe mitotic defects and undergo cell death either during mitosis or after arresting in a tetraploid G1 state. Our results thus show that DNMT1 is required for faithfully maintaining DNA methylation patterns in human cancer cells and is essential for their proliferation and survival.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dysregulation of p53/Sp1 control leads to DNA methyltransferase-1 overexpression in lung cancer.

            Overexpression of DNA 5'-cytosine-methyltransferases (DNMT), which are enzymes that methylate the cytosine residue of CpGs, is involved in many cancers. However, the mechanism of DNMT overexpression remains unclear. Here, we showed that wild-type p53 negatively regulated DNMT1 expression by forming a complex with specificity protein 1 (Sp1) protein and chromatin modifiers on the DNMT1 promoter. However, the stoichiometry between p53 and Sp1 determined whether Sp1 acts as a transcription activator or corepressor. Low level of exogenous Sp1 enhanced the repressive activity of endogenous p53 on the DNMT1 promoter whereas high level of Sp1 upregulated DNMT1 gene expression level in A549 (p53 wild-type) cells. In H1299 (p53 null) cells, exogenous Sp1 induced DNMT1 expression in a dose-dependent manner. We also discovered a new mechanism whereby high level of Sp1, via its COOH-terminal domain, induced interaction between p53 and MDM2, resulting in degradation of p53 by MDM2-mediated ubiquitination. Clinical data from 102 lung cancer patients indicated that overexpression of DNMT1 was associated with p53 mutation (P = 0.014) and high expression of Sp1 protein (P = 0.006). In addition, patients with overexpression of both DNMT1 and Sp1 proteins showed poor prognosis (P = 0.037). Our cell and clinical data provided compelling evidence that deregulation of DNMT1 is associated with gain of transcriptional activation of Sp1 and/or loss of repression of p53. DNMT1 overexpression results in epigenetic alteration of multiple tumor suppressor genes and ultimately leads to lung tumorigenesis and poor prognosis. (c)2010 AACR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Soluble epoxide hydrolase as a therapeutic target for pain, inflammatory and neurodegenerative diseases

              Eicosanoids are biologically active lipid signaling molecules derived from polyunsaturated fatty acids. Many of the actions of eicosanoid metabolites formed by cyclooxygenase and lipoxygenase enzymes have been characterized, however, the epoxy-fatty acids (EpFAs) formed by cytochrome P450 enzymes are newly described by comparison. The EpFA metabolites modulate a diverse set of physiologic functions that include inflammation and nociception among others. Regulation of EpFAs occurs primarily via release, biosynthesis and enzymatic transformation by the soluble epoxide hydrolase (sEH). Targeting sEH with small molecule inhibitors has enabled observation of the biological activity of the EpFAs in vivo in animal models, greatly contributing to the overall understanding of their role in the inflammatory response. Their role in modulating inflammation has been demonstrated in disease models including cardiovascular pathology and inflammatory pain, but extends to neuroinflammation and neuroinflammatory disease. Moreover, while the EpFA demonstrate activity against inflammatory pain, interestingly, this action extends to blocking chronic neuropathic pain as well. This review outlines the role of modulating sEH and the biological action of EpFA in models of pain and inflammatory diseases.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                18 May 2018
                May 2018
                : 19
                : 5
                : 1511
                Affiliations
                [1 ]Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Pará, 66075-900 Belém, Brazil; rcabral@ 123456ufpa.br (R.d.T.); joycekellys@ 123456ufpa.br (J.K.d.S.)
                [2 ]Programa de Pós-Graduação em Química, Universidade Federal do Pará, 66075-900 Belém, Brazil
                [3 ]Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
                [4 ]Aromatic Plant Research Center, 615 St. George Square Court, Suite 300, Winston-Salem, NC 27103, USA
                Author notes
                [* ]Correspondence: wsetzer@ 123456chemistry.uah.edu or wsetzer@ 123456aromaticplant.org ; Tel.: +1-256-824-6519
                Author information
                https://orcid.org/0000-0002-9351-876X
                https://orcid.org/0000-0002-3639-0528
                Article
                ijms-19-01511
                10.3390/ijms19051511
                5983702
                29783680
                95804f21-3b6c-4257-9211-c95aba37d0b0
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 25 April 2018
                : 15 May 2018
                Categories
                Review

                Molecular biology
                copaiba,oleoresin,essential oil,sesquiterpenoids,diterpenoids,biological activity,molecular targets

                Comments

                Comment on this article