1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Determination of the antimicrobial activity of lactic acid bacteria isolated from the Black sea mussel Mytilus galloprovincialis Lamarck, 1819

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present study reports on the determination of the antimicrobial activity of lactic acid bacteria (LAB) isolated from the Black sea mussel Mytilus galloprovincialis Lamarck, 1819. The samples were collected in the period of August 2018 until March 2021. The BIOLOG system was used for microbiological determination. From the mussel M. galloprovincialis Lam. four species of LAB were isolated - Sporolactobacillus kofuensis, Lactobacillus sakei, Streptococcus gallolyticus ss gallolyticus and Lactibacillus brevis. The activity of the strains was determined against test cultures (Escherichia coli 3398, Staphylococus aureus 745, Bacillus subtilis 6633, Salmonella typhimurium 3591, Listeria monocytogens 863 Enterobacter aerogenes 3691, Aspergillus niger, Penicillium claviforme, Saccharomyces cerevisae, Candida albicans 8673 and Candida glabrata 72). Before the analysis for antimicrobial activity, the LAB were cultured in media with different concentrations of sugars - 2, 5 and 10%. The results showed that 4 strains S. kofuensis, L. sakei, S. gallolyticus ss gallolyticus and L. brevis cultured on glucose and oligosaccharides completely lost their activity in all studied variants. Therefore, some carbohydrates (glucose) and oligosaccharides induce the synthesis outside the cell of biologically active molecules, which can probably be attributed to peptides/proteins.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies.

          Short cationic amphiphilic peptides with antimicrobial and/or immunomodulatory activities are present in virtually every life form, as an important component of (innate) immune defenses. These host-defense peptides provide a template for two separate classes of antimicrobial drugs. Direct-acting antimicrobial host-defense peptides can be rapid-acting and potent, and possess an unusually broad spectrum of activity; consequently, they have prospects as new antibiotics, although clinical trials to date have shown efficacy only as topical agents. But for these compounds to fulfill their therapeutic promise and overcome clinical setbacks, further work is needed to understand their mechanisms of action and reduce the potential for unwanted toxicity, to make them more resistant to protease degradation and improve serum half-life, as well as to devise means of manufacturing them on a large scale in a consistent and cost-effective manner. In contrast, the role of cationic host-defense peptides in modulating the innate immune response and boosting infection-resolving immunity while dampening potentially harmful pro-inflammatory (septic) responses gives these peptides the potential to become an entirely new therapeutic approach against bacterial infections.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of antimicrobial peptide action and resistance.

            Antimicrobial peptides have been isolated and characterized from tissues and organisms representing virtually every kingdom and phylum, ranging from prokaryotes to humans. Yet, recurrent structural and functional themes in mechanisms of action and resistance are observed among peptides of widely diverse source and composition. Biochemical distinctions among the peptides themselves, target versus host cells, and the microenvironments in which these counterparts convene, likely provide for varying degrees of selective toxicity among diverse antimicrobial peptide types. Moreover, many antimicrobial peptides employ sophisticated and dynamic mechanisms of action to effect rapid and potent activities consistent with their likely roles in antimicrobial host defense. In balance, successful microbial pathogens have evolved multifaceted and effective countermeasures to avoid exposure to and subvert mechanisms of antimicrobial peptides. A clearer recognition of these opposing themes will significantly advance our understanding of how antimicrobial peptides function in defense against infection. Furthermore, this understanding may provide new models and strategies for developing novel antimicrobial agents, that may also augment immunity, restore potency or amplify the mechanisms of conventional antibiotics, and minimize antimicrobial resistance mechanisms among pathogens. From these perspectives, the intention of this review is to illustrate the contemporary structural and functional themes among mechanisms of antimicrobial peptide action and resistance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibacterial peptides for therapeutic use: obstacles and realistic outlook.

              Cationic antimicrobial peptides are produced by almost all species of life as a component of their immediate non-specific defense against infections. The assets of these peptides in clinical application include their potential for broad-spectrum activity, rapid bactericidal activity and low propensity for resistance development, whereas possible disadvantages include their high cost, limited stability (especially when composed of L-amino acids), and unknown toxicology and pharmacokinetics. Initial barriers to their success are being increasingly overcome with the development of stable, more cost-effective and potent broad-spectrum synthetic peptides. Thus, there is hope that they will spawn a new generation of antimicrobials with a broad range of topical and systemic applications against infections.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Pharmacia
                PHAR
                Pensoft Publishers
                2603-557X
                0428-0296
                July 19 2022
                July 19 2022
                : 69
                : 3
                : 637-644
                Article
                10.3897/pharmacia69..e84850
                959522f7-a004-48eb-89e1-1f8897f19532
                © 2022

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article