2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dietary Stevioside Supplementation Alleviates Lipopolysaccharide-Induced Intestinal Mucosal Damage through Anti-Inflammatory and Antioxidant Effects in Broiler Chickens

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The study was conducted to investigate the effects of dietary stevioside (STE) supplementation on the lipopolysaccharide (LPS)-induced intestinal mucosal damage of broiler chickens. A total of 192 one-day-old male Ross 308 broiler chicks were randomly divided into four treatments: (1) basal diet (CON); (2) basal diet supplemented with 250 mg/kg stevioside (STE); (3) basal diet + LPS-challenge (LPS); (4) basal diet supplemented with 250 mg/kg stevioside + LPS-challenge (LPS + STE). LPS-challenged groups received an intraperitoneal injection of LPS at 17, 19 and 21 d, whereas the CON and STE groups received a saline injection. The results showed that dietary STE supplementation normalized LPS-induced changes in protein expression of p-NF-κB and p-IκBα, mRNA expression of inflammatory genes (TLR4, NF-κB, and IFN-γ), tight junction-related genes (CLDN2, OCLN, and ZO-1), and antioxidant genes (Nrf2 and HO-1). LPS-induced decreases in serum diamine oxidase (DAO) level, villus height-to-crypt depth ratio, apoptotic index, and protein expression of proliferating cell nuclear antigen (PCNA) were reversed with dietary STE supplementation. Additionally, STE supplementation ameliorated the redox damage by reducing malondialdehyde (MDA) content and increasing total antioxidant capacity (T-AOC) and antioxidant enzyme activity. In conclusion, dietary stevioside supplementation could alleviate LPS-induced intestinal mucosal damage through anti-inflammatory and antioxidant effects in broiler chickens.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: not found
          • Article: not found

          A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Apoptosis, necrosis and necroptosis: cell death regulation in the intestinal epithelium.

            Intestinal epithelial cells (IEC) are organised as a single cell layer which covers the intestine. Their primary task is to absorb nutrients present in the intestinal lumen. However, IEC also play an important role in the immune defence of our body by building a barrier that separates the bowel wall from potentially hazardous bacteria present in the gut lumen. The life cycle of IEC is determined by the time span in which cells migrate from their place of origin at the crypt base to the villus tip, from where they are shed into the lumen. Cell death in the intestinal epithelium has to be tightly regulated and irregularities might cause pathologies. Excessive cell death has been associated with chronic inflammation as seen in patients with Crohn's disease and ulcerative colitis. While until recently apoptosis was discussed as being essential for epithelial turnover and tissue homeostasis in the intestinal epithelium, recent data using gene deficient mice have challenged this concept. Moreover, an apoptosis-independent mode of programmed cell death, termed necroptosis, has been identified and described in the intestinal epithelium. The following article reviews previous studies on cell death regulation in IEC and a potential role of necroptosis for gut homeostasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors.

              LPS elicits several immediate proinflammatoy responses in peripheral blood leukocytes via a recently described pathway including CD14, Toll-like receptors (TLR), serine-threonine kinases, and NF-kappaB transcription factor. However, the functional responses of intestinal epithelial cells (IEC) to stimulation with LPS are unknown. Expression of mRNA and protein for CD14 and TLRs were assessed by RT-PCR, immunoblotting, and immunohistochemistry in mouse and human IEC lines. LPS-induced activation of signaling pathways (p42/p44 mitogen-activated protein kinase (MAPK), c-Jun NH2-terminal kinase (JNK), p38, p65, NF-kappaB) were assessed by immunoblotting and gel shifts. CD14 mRNA and protein expression were not detectable in IEC. However, human TLR2, TLR3, and TLR4 mRNA were present in IEC. TLR4 protein was expressed in all cell lines; however, TLR2 protein was absent in HT29 cells. Immunofluorescent staining of T84 cells demonstrated the cell-surface presence of the TLRs. LPS-stimulation of IEC resulted in activation (>1.5-fold) of the three members of the MAPK family. In contrast, LPS did not significantly induce activation of JNK and p38 in CMT93 cells, p38 in T84 cells and MAPK and JNK in HT29 cells. Downstream, LPS activated NF-kappaB in IEC in a time-, dose-, and serum-dependent manner. IEC express TLRs that appear to mediate LPS stimulation of specific intracellular signal transduction pathways in IEC. Thus, IEC may play a frontline role in monitoring lumenal bacteria.
                Bookmark

                Author and article information

                Journal
                Antioxidants (Basel)
                Antioxidants (Basel)
                antioxidants
                Antioxidants
                MDPI
                2076-3921
                21 November 2019
                December 2019
                : 8
                : 12
                : 575
                Affiliations
                [1 ]National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
                [2 ]Changzhou Animal Disease Control Center, Bureau of Agriculture and Rural Affairs of Changzhou, Changzhou 213003, China
                Author notes
                [* ]Correspondence: fxshi@ 123456njau.edu.cn
                Author information
                https://orcid.org/0000-0001-6271-6184
                Article
                antioxidants-08-00575
                10.3390/antiox8120575
                6943682
                31766443
                95f8b93d-e833-44ac-9965-febea1f68cd2
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 16 October 2019
                : 19 November 2019
                Categories
                Article

                stevioside,anti-inflammatory,antioxidant,intestinal mucosae,broiler,lps

                Comments

                Comment on this article