3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Granulocyte Colony-Stimulating Factor (G-CSF) for the Treatment of Spinal Cord Injury

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemiology, demographics, and pathophysiology of acute spinal cord injury.

          Spinal cord injury occurs through various countries throughout the world with an annual incidence of 15 to 40 cases per million, with the causes of these injuries ranging from motor vehicle accidents and community violence to recreational activities and workplace-related injuries. Survival has improved along with a greater appreciation of patterns of presentation, survival, and complications. Despite much work having been done, the only treatment to date known to ameliorate neurologic dysfunction that occurs at or below the level of neurologic injury has been intravenous methylprednisolone therapy. Much research over the past 30 to 40 years has focused on elucidating the mechanisms of spinal cord injury, with the complex pathophysiologic processes slowly being unraveled. With a greater understanding of both primary and secondary mechanisms of injury, the roles of calcium, free radicals, sodium, excitatory amino acids, vascular mediators, and apoptosis have been elucidated. This review examines the epidemiology, demographics, and pathophysiology of acute spinal cord injury.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adult bone marrow stromal cells differentiate into neural cells in vitro.

            Bone marrow stromal cells (BMSC) normally give rise to bone, cartilage, and mesenchymal cells. Recently, bone marrow cells have been shown to have the capacity to differentiate into myocytes, hepatocytes, and glial cells. We now demonstrate that human and mouse BMSC can be induced to differentiate into neural cells under experimental cell culture conditions. BMSC cultured in the presence of EGF or BDNF expressed the protein and mRNA for nestin, a marker of neural precursors. These cultures also expressed glial fibrillary acidic protein (GFAP) and neuron-specific nuclear protein (NeuN). When labeled human or mouse BMSC were cultured with rat fetal mesencephalic or striatal cells, a small proportion of BMSC-derived cells differentiated into neuron-like cells expressing NeuN and glial cells expressing GFAP. Copyright 2000 Academic Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis.

              G-CSF is a potent hematopoietic factor that enhances survival and drives differentiation of myeloid lineage cells, resulting in the generation of neutrophilic granulocytes. Here, we show that G-CSF passes the intact blood-brain barrier and reduces infarct volume in 2 different rat models of acute stroke. G-CSF displays strong anti-apoptotic activity in mature neurons and activates multiple cell survival pathways. Both G-CSF and its receptor are widely expressed by neurons in the CNS, and their expression is induced by ischemia, which suggests an autocrine protective signaling mechanism. Surprisingly, the G-CSF receptor was also expressed by adult neural stem cells, and G-CSF induced neuronal differentiation in vitro. G-CSF markedly improved long-term behavioral outcome after cortical ischemia, while stimulating neural progenitor response in vivo, providing a link to functional recovery. Thus, G-CSF is an endogenous ligand in the CNS that has a dual activity beneficial both in counteracting acute neuronal degeneration and contributing to long-term plasticity after cerebral ischemia. We therefore propose G-CSF as a potential new drug for stroke and neurodegenerative diseases.
                Bookmark

                Author and article information

                Journal
                CNS Drugs
                CNS Drugs
                Springer Science and Business Media LLC
                1172-7047
                1179-1934
                November 2017
                October 23 2017
                November 2017
                : 31
                : 11
                : 911-937
                Article
                10.1007/s40263-017-0472-6
                29063471
                963f3bc2-a599-42bd-9c8a-3d2bf3578003
                © 2017

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article