7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spatial scale-dependent land–atmospheric methane exchanges in the northern high latitudes from 1993 to 2004

      , , ,
      Biogeosciences
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Effects of various spatial scales of water table dynamics on land–atmospheric methane (CH<sub>4</sub>) exchanges have not yet been assessed for large regions. Here we used a coupled hydrology–biogeochemistry model to quantify daily CH<sub>4</sub> exchanges over the pan-Arctic from 1993 to 2004 at two spatial scales of 100 km and 5 km. The effects of sub-grid spatial variability of the water table depth (WTD) on CH<sub>4</sub> emissions were examined with a TOPMODEL-based parameterization scheme for the northern high latitudes. We found that both WTD and CH<sub>4</sub> emissions are better simulated at a 5 km spatial resolution. By considering the spatial heterogeneity of WTD, net regional CH<sub>4</sub> emissions at a 5 km resolution are 38.1–55.4 Tg CH<sub>4</sub> yr<sup>−1</sup> from 1993 to 2004, which are on average 42% larger than those simulated at a 100 km resolution using a grid-cell-mean WTD scheme. The difference in annual CH<sub>4</sub> emissions is attributed to the increased emitting area and enhanced flux density with finer resolution for WTD. Further, the inclusion of sub-grid WTD spatial heterogeneity also influences the inter-annual variability of CH<sub>4</sub> emissions. Soil temperature plays an important role in the 100 km estimates, while the 5 km estimates are mainly influenced by WTD. This study suggests that previous macro-scale biogeochemical models using a grid-cell-mean WTD scheme might have underestimated the regional CH<sub>4</sub> emissions. The spatial scale-dependent effects of WTD should be considered in future quantification of regional CH<sub>4</sub> emissions.

          Related collections

          Author and article information

          Journal
          Biogeosciences
          Biogeosciences
          Copernicus GmbH
          1726-4189
          2014
          April 01 2014
          : 11
          : 7
          : 1693-1704
          Article
          10.5194/bg-11-1693-2014
          9817f6b1-ad71-4510-8ff8-cdbd0ae587f9
          © 2014

          http://creativecommons.org/licenses/by/3.0/

          History

          Comments

          Comment on this article